Advertisement

AGN Simulation and Validation Model

  • Fabrício M. Lopes
  • Roberto M. CesarJr
  • Luciano da F. Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5167)

Abstract

An important question in computational biology is how genes are regulated and interact through gene networks. Some methods for the identification of gene networks from temporal data were proposed. An important open problem regards how to validate such resulting networks. This work presents an approach to validate such algorithms, considering three main aspects: (1) AGN model generation and simulation; (2) gene network identification; (3) validation of identified network.

Keywords

Gene Network Probabilistic Boolean Network Rule Table Sequential Forward Float Selection Intraerythrocytic Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shmulevich, I., Dougherty, E.R.: Genomic Signal Processing, 1st edn. Princeton University Press, New Jersey (2007)zbMATHGoogle Scholar
  2. 2.
    Barrera, J., Cesar Jr., R.M., Martins Jr., D.C., et al.: Constructing probabilistic genetic networks of Plasmodium falciparum from dynamical expression signals of the intraerythrocytic development cycle. In: Methods of Microarray Data Analysis V. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures, pp. 18–29 (1998)Google Scholar
  4. 4.
    Shmulevich, I., et al.: Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Mendes, P., Sha, W., Ye, K.: Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19(Suppl. 2), 122ii–129 (2003)Google Scholar
  6. 6.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)CrossRefGoogle Scholar
  7. 7.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    da F. Costa, L., Rodrigues, F.A., et al.: Characterization of complex networks: a survey of measurements. Advances in Physics 56(1), 167–242 (2007)CrossRefGoogle Scholar
  9. 9.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  10. 10.
    da F. Costa, L., et al.: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology 1, 1–16 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Fabrício M. Lopes
    • 1
    • 3
  • Roberto M. CesarJr
    • 1
  • Luciano da F. Costa
    • 2
  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloBrazil
  2. 2.Instituto de Física de São CarlosUniversidade de São PauloBrazil
  3. 3.Universidade Tecnológica Federal do ParanáBrazil

Personalised recommendations