Advertisement

Pairing Computation on Twisted Edwards Form Elliptic Curves

  • M. Prem Laxman Das
  • Palash Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5209)

Abstract

A new form of elliptic curve was recently discovered by Edwards and their application to cryptography was developed by Bernstein and Lange. The form was later extended to the twisted Edwards form. For cryptographic applications, Bernstein and Lange pointed out several advantages of the Edwards form in comparison to the more well known Weierstraß form. We consider the problem of pairing computation over Edwards form curves. Using a birational equivalence between twisted Edwards and Weierstraß forms, we obtain a closed form expression for the Miller function computation.

Simplification of this computation is considered for a class of supersingular curves. As part of this simplification, we obtain a distortion map similar to that obtained for Weierstraß form curves by Barreto et al and Galbraith et al. Finally, we present explicit formulae for combined doubling and Miller iteration and combined addition and Miller iteration using both inverted Edwards and projective Edwards coordinates. For the class of supersingular curves considered here, our pairing algorithm can be implemented without using any inversion.

Keywords

elliptic curve pairings Edwards form Miller function supersingular curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptology 17(4), 263–276 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/
  4. 4.
    Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm in the divisor class group of curves. Mathematics of Computation 62, 865–874 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Miller, V.S.: The Weil pairing and its efficient calculation. J. Cryptology 17(4), 235–261 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society 44, 393–422 (2007)MATHCrossRefGoogle Scholar
  9. 9.
    Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bernstein, D.J., Lange, T.: Inverted Edwards coordinates. In: Boztas, S., Lu, H.F. (eds.) AAECC 2007. LNCS, vol. 4851, pp. 20–27. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in projective coordinate over general characteristic fields. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 168–181. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Twisted Edwards curves. Cryptology ePrint Archive, Report 2008/013 (2008) http://eprint.iacr.org/ (Accepted in AFRICACRYPT 2008)
  13. 13.
    Euler, L.: Observationes de comparatione arcuum curvarum irrectificabilium. Novi Comm. Acad. Sci. Petropolitanae 6(1761), 58–84Google Scholar
  14. 14.
    Gauss, C.F.: Werke 3, 404Google Scholar
  15. 15.
    Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. Journal of Cryptology 17, 277–296 (2004)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003), http://www.wolfram.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Prem Laxman Das
    • 1
  • Palash Sarkar
    • 1
  1. 1.Applied Statistics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations