Real Algebraic Numbers: Complexity Analysis and Experimentation

  • Ioannis Z. Emiris
  • Bernard Mourrain
  • Elias P. Tsigaridas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5045)

Abstract

We present algorithmic, complexity and implementation results concerning real root isolation of a polynomial of degree d, with integer coefficients of bit size ≤ τ, using Sturm (-Habicht) sequences and the Bernstein subdivision solver. In particular, we unify and simplify the analysis of both methods and we give an asymptotic complexity bound of \(\mathcal{\tilde O}_B(d^4 \tau^2)\). This matches the best known bounds for binary subdivision solvers. Moreover, we generalize this to cover the non square-free polynomials and show that within the same complexity we can also compute the multiplicities of the roots. We also consider algorithms for sign evaluation, comparison of real algebraic numbers and simultaneous inequalities, and we improve the known bounds at least by a factor of d.

Finally, we present our C++ implementation in synaps and some preliminary experiments on various data sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akritas, A.: An implementation of Vincent’s theorem. Numerische Mathematik 36, 53–62 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Heidelberg (2003)MATHGoogle Scholar
  3. 3.
    Ben-Or, M., Kozen, D., Reif, J.H.: The complexity of elementary algebra and geometry. J. Comput. Syst. Sci. 32, 251–264 (1986)MATHCrossRefGoogle Scholar
  4. 4.
    Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and Exact Algorithms for Curves and Surfaces. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 155–166. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bini, D.: Numerical computation of polynomial zeros by means of Aberth’s method. Numerical Algorithms 13(3–4), 179–200 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bini, D., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms, 127–173 (2000)Google Scholar
  7. 7.
    Canny, J.: Improved algorithms for sign determination and existential quantifier elimination. The Computer Journal 36(5), 409–418 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cazals, F., Faugère, J.-C., Pouget, M., Rouillier, F.: The implicit structure of ridges of a smooth parametric surface. Technical Report 5608, INRIA (2005)Google Scholar
  9. 9.
    Collins, G.: Subresultants and reduced polynomial remainder sequences. J. ACM 14, 128–142 (1967)MATHGoogle Scholar
  10. 10.
    Collins, G., Akritas, A.: Polynomial real root isolation using Descartes’ rule of signs. In: SYMSAC 1976, pp. 272–275. ACM Press, New York (1976)CrossRefGoogle Scholar
  11. 11.
    Collins, G., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn., pp. 83–94. Springer, Wien (1982)Google Scholar
  12. 12.
    Coste, M., Roy, M.F.: Thom’s lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets. J. Symb. Comput. 5(1/2), 121–129 (1988)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Davenport, J.H.: Cylindrical algebraic decomposition. Technical Report 88–10, School of Mathematical Sciences, University of Bath, England (1988), http://www.bath.ac.uk/masjhd/
  14. 14.
    Du, Z., Sharma, V., Yap, C.K.: Amortized bound for root isolation via Sturm sequences. In: Wang, D., Zhi, L. (eds.) Int. Workshop on Symbolic Numeric Computing, School of Science, Beihang University, Beijing, China, pp. 81–93 (2005)Google Scholar
  15. 15.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Eigenwillig, A., Sharma, V., Yap, C.K.: Almost tight recursion tree bounds for the Descartes method. In: ISSAC 2006: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, pp. 71–78. ACM Press, New York (2006)CrossRefGoogle Scholar
  17. 17.
    El Kahoui, M.: An elementary approach to subresultants theory. J. Symb. Comput. 35(3), 281–292 (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Emiris, I., Kakargias, A., Teillaud, M., Tsigaridas, E., Pion, S.: Towards an open curved kernel. In: Proc. Annual ACM Symp. on Computational Geometry, pp. 438–446. ACM Press, New York (2004)Google Scholar
  19. 19.
    Emiris, I., Tsigaridas, E.: Computing with real algebraic numbers of small degree. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 652–663. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Emiris, I., Tsigaridas, E.: Real solving of bivariate polynomial systems. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds.) Proc. Computer Algebra in Scientific Computing (CASC), pp. 150–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Emiris, I., Tsigaridas, E., Tzoumas, G.: The predicates for the Voronoi diagram of ellipses. In: Proc. 22th Annual ACM Symp. on Computational Geometry, Sedona, USA, pp. 227–236 (2006)Google Scholar
  22. 22.
    Emiris, I., Tsigaridas, E.P.: Computations with one and two algebraic numbers. Technical report, ArXiv (Dec 2005)Google Scholar
  23. 23.
    Geddes, K., Czapor, S., Labahn, G.: Algorithms of Computer Algebra. Kluwer Academic Publishers, Boston (1992)Google Scholar
  24. 24.
    González-Vega, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-Habicht Sequence. In: ISSAC, pp. 136–146 (1989)Google Scholar
  25. 25.
    Guibas, L., Karavelas, M., Russel, D.: A computational framework for handling motion. In: Proc. 6th Workshop Algor. Engin. & Experim. (ALENEX), January 2004, pp. 129–141 (2004)Google Scholar
  26. 26.
    Heindel, L.E.: Integer arithmetic algorithms for polynomial real zero determination. Journal of the Association for Computing Machinery 18(4), 533–548 (1971)MATHMathSciNetGoogle Scholar
  27. 27.
    Johnson, J.: Algorithms for polynomial real root isolation. In: Caviness, B., Johnson, J. (eds.) Quantifier elimination and cylindrical algebraic decomposition, pp. 269–299. Springer, Heidelberg (1998)Google Scholar
  28. 28.
    Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A CORE library for robust numeric and geometric computation. In: 15th ACM Symp. on Computational Geometry (1999)Google Scholar
  29. 29.
    Krandick, W.: Isolierung reeller Nullstellen von Polynomen. In: Herzberger, J. (ed.) Wissenschaftliches Rechnen, pp. 105–154. Akademie-Verlag, Berlin (1995)Google Scholar
  30. 30.
    Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. JSC 41(1), 49–66 (2006)MATHMathSciNetGoogle Scholar
  31. 31.
    Lane, J.M., Riesenfeld, R.F.: Bounds on a polynomial. BIT 21, 112–117 (1981)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lickteig, T., Roy, M.-F.: Sylvester-Habicht Sequences and Fast Cauchy Index Computation. J. Symb. Comput. 31(3), 315–341 (2001)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lombardi, H., Roy, M.-F., Safey El Din, M.: New Structure Theorem for Subresultants. J. Symb. Comput. 29(4-5), 663–689 (2000)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Mignotte, M.: Mathematics for Computer Algebra. Springer, Heidelberg (1992)MATHGoogle Scholar
  35. 35.
    Mignotte, M.: On the Distance Between the Roots of a Polynomial. Appl. Algebra Eng. Commun. Comput. 6(6), 327–332 (1995)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Mourrain, B., Pavone, J.P., Trébuchet, P., Tsigaridas, E.: SYNAPS, a library for symbolic-numeric computation. In: 8th Int. Symposium on Effective Methods in Algebraic Geometry, MEGA, Sardinia, Italy, May 2005. Software presentation (2005)Google Scholar
  37. 37.
    Mourrain, B., Rouillier, F., Roy, M.-F.: Bernstein’s basis and real root isolation. Mathematical Sciences Research Institute Publications, pp. 459–478. Cambridge University Press, Cambridge (2005)Google Scholar
  38. 38.
    Mourrain, B., Técourt, J., Teillaud, M.: On the computation of an arrangement of quadrics in 3d. Comput. Geom. 30(2), 145–164 (2005)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Mourrain, B., Vrahatis, M., Yakoubsohn, J.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complexity 18(2) (2002)Google Scholar
  40. 40.
    Pan, V.: Univariate polynomials: Nearly optimal algorithms for numerical factorization and rootfinding. J. Symbolic Computation 33(5), 701–733 (2002)MATHCrossRefGoogle Scholar
  41. 41.
    Reischert, D.: Asymptotically fast computation of subresultants. In: ISSAC, pp. 233–240 (1997)Google Scholar
  42. 42.
    Rioboo, R.: Towards faster real algebraic numbers. In: Proc. ACM Intern. Symp. on Symbolic & Algebraic Comput, Lille, France, pp. 221–228 (2002)Google Scholar
  43. 43.
    Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomial’s real roots. J. of Computational and Applied Mathematics 162(1), 33–50 (2004)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Roy, M.-F., Szpirglas, A.: Complexity of the Computation on Real Algebraic Numbers. J. Symb. Comput. 10(1), 39–52 (1990)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Univ. of Tübingen, Germany (manuscript, 1982)Google Scholar
  46. 46.
    Sharma, V., Yap, C.: Sharp Amortized Bounds for Descartes and de Casteljau’s Methods for Real Root Isolation (October 2005) (unpublished manuscript)Google Scholar
  47. 47.
    Tsigaridas, E.P., Emiris, I.Z.: Univariate polynomial real root isolation: Continued fractions revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 817–828. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  48. 48.
    von zur Gathen, J., Gerhard, J.: Fast Algorithms for Taylor Shifts and Certain Difference Equations. In: ISSAC, pp. 40–47 (1997)Google Scholar
  49. 49.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge Univ. Press, Cambridge (2003)MATHGoogle Scholar
  50. 50.
    von zur Gathen, J., Lücking, T.: Subresultants revisited. Theor. Comput. Sci. 1-3(297), 199–239 (2003)Google Scholar
  51. 51.
    Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Bernard Mourrain
    • 2
  • Elias P. Tsigaridas
    • 1
  1. 1.Department of Informatics and TelecommunicationsNational Kapodistrian University of AthensHellas 
  2. 2.GALAAD, Inria, Sophia-AntipolisFrance

Personalised recommendations