Advertisement

XML Storage and Processing on Mobile Devices

  • Raymond K. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5175)

Abstract

As XML database sizes grow, the amount of space used for storing the data and auxiliary data structures becomes a major factor in query and update performance. This is especially critical for devices with limited resources such as handheld computers, mobile phones or sensor networks. This presentation describes the requirements for efficiently storing and processing XML data on mobile devices. In particular, it summarizes our previous work on a compact XML storage scheme that supports all XPath navigational operations in near constant time. In addition to supporting efficient queries, the space requirement of the proposed scheme is within a constant factor of the information theoretic minimum, while insertions and deletions can be performed in near constant time as well. As a result, the proposed structure features a small memory footprint that increases cache locality, whilst still supporting standard APIs, such as DOM, and necessary database operations, such as queries and updates, efficiently. Finally, some applications using the proposed storage scheme are presented.

Keywords

Mobile Device Storage Scheme Path Query Tree Transducer Auxiliary Data Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.: Structural joins: A primitive for efficient XML query pattern matching. In: Proceedings of the 18th International Conference on Data Engineering (ICDE), pp. 141–153. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  2. 2.
    Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: Proceedings of the 29th International Conference on Very Large Databases (VLDB), pp. 141–152. Morgan Kaufmann, San Francisco (2003)Google Scholar
  3. 3.
    Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML documents. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Mihaila, G.A., Bordawekar, R., Padmanabhan, S.: L-tree: A dynamic labeling structure for ordered XML data. In: Lindner, W., Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 209–218. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Cheney, J.: XMLPPM: XML-Conscious PPM Compression, http://www.cs.cornell.edu/People/jcheney/xmlppm/xmlppm.html
  6. 6.
    Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and searching XML data via two zips. In: WWW, pp. 751–760 (2006)Google Scholar
  7. 7.
    Grust, T., van Keulen, M., Teubner, J.: Accelerating xpath evaluation in any RDBMS. ACM Trans. Database Syst. 29, 91–131 (2004)CrossRefGoogle Scholar
  8. 8.
    Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R., Rao, A.N., Tian, F., Viglas, S., Wang, Y., Naughton, J.F., DeWitt, D.J.: Mixed Mode XML Query Processing. In: Proceedings of the 29th International Conference on Very Large Databases (VLDB), pp. 225–236. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A., Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.: TIMBER: A native XML database. VLDB Journal 11(4), 274–291 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In: Proceedings of the 27th International Conference on Very Large Databases (VLDB), pp. 361–370. Morgan Kaufmann, San Francisco (2001)Google Scholar
  11. 11.
    Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp. 153–164. ACM Press, New York (2000)CrossRefGoogle Scholar
  12. 12.
    Maneth, S., Busatto, G.: Tree transducers and tree compressions. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 363–377. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Min, J.-K., Park, M.-J., Chung, C.-W.: XPRESS: A Queriable Compression for XML Data. In: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 122–133. ACM Press, New York (2003)CrossRefGoogle Scholar
  14. 14.
    Silberstein, A., He, H., Yi, K., Yang, J.: BOXes: Efficient maintenance of order-based labeling for dynamic XML data. In: 21st International Conference on Data Engineering (ICDE), pp. 285–296 (2005)Google Scholar
  15. 15.
    Tolani, P.M., Haritsa, J.R.: XGRIND: A query-friendly XML compressor. In: Proceedings of the 18th International Conference on Data Engineering (ICDE), pp. 225–234. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  16. 16.
    Wong, R., Lam, F., Shui, W.: Querying and maintaining a compact XML storage. In: WWW, pp. 1073–1082 (2007)Google Scholar
  17. 17.
    Zhang, N., Kacholia, V., Ozsu, M.T.: A Succinct Physical Storage Scheme for Efficient Evaluation of Path Queries in XML. In: Proceedings of the 20th International Conference on Data Engineering (ICDE), pp. 54–65. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Raymond K. Wong
    • 1
  1. 1.NICTA and University of New South WalesAustralia

Personalised recommendations