Advertisement

Scalability of Grid Simulators: An Evaluation

  • Wim Depoorter
  • Nils De Moor
  • Kurt Vanmechelen
  • Jan Broeckhove
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5168)

Abstract

Due to the distributed nature of resources in grids that cover multiple administrative domains, grid resource management cannot be optimally implemented using traditional approaches. In order to investigate new grid resource management systems, researchers utilize simulators which allows them to efficiently evaluate new algorithms on a large scale. We have developed the Grid Economics Simulator (GES) in support of research into grid resource management in general and economic grid resource management in particular. This paper compares GES to SimGrid and GridSim, two established grid simulation frameworks. We demonstrate that GES compares favourably to the other frameworks in terms of scalability, runtime performance and memory requirements. We explain how these differences are related to the simulation paradigm and the threading model used in each simulator.

Keywords

Simulation Grids Performance Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Legrand, A., Marchal, L., Casanova, H.: Scheduling distributed applications: the simgrid simulation framework. In: Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2003), pp. 138–145. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  2. 2.
    Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. Concurrency and Computat. Pract. Exper. 14(13-15), 1175–1220 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Vanmechelen, K., Depoorter, W., Broeckhove, J.: A simulation framework for studying economic resource management in grids. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 226–235. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Aida, K., Tekefusa, A., Nakada, H., Matsuoka, S., Sekiguchi, S., Nagashima, U.: Performance evaluation model for scheduling in global computing systems. The International Journal of High Performance Computing Applications 14(3), 268–279 (2000)CrossRefGoogle Scholar
  5. 5.
    Sulistio, A., Poduval, G., Buyya, R., Tham, C.K.: On incorporating differentiated levels of network service into gridsim. Future Gener. Comput. Syst. 23(4), 606–615 (2007)CrossRefGoogle Scholar
  6. 6.
    Casanova, H.: Simgrid: a toolkit for the simulation of application scheduling. In: Proceedings of CCGrid 2001, pp. 430–437. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  7. 7.
    Legrand, A., Lerouge, J.: Metasimgrid: Towards realistic scheduling simulation of distributed applications. Technical Report 2002-28, LIP (2002)Google Scholar
  8. 8.
    Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing. PhD thesis, Monash University, Australia (2002)Google Scholar
  9. 9.
    Assuncao, M., Buyya, R.: An evaluation of communication demand of auction protocols in grid environments. In: Proceedings of GECON 2006, pp. 24–33. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  10. 10.
    Vanmechelen, K., Broeckhove, J.: A comparative analysis of single-unit vickrey auctions and commodity markets for realizing grid economies with dynamic pricing. In: Altmann, J., Veit, D. (eds.) GECON 2007. LNCS, vol. 4685, pp. 98–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Stuer, G., Vanmechelen, K., Broeckhove, J.: A commodity market algorithm for pricing substitutable grid resources. Future Generation Computer Systems 23(5), 688–701 (2007)CrossRefGoogle Scholar
  12. 12.
    Vanmechelen, K., Depoorter, W., Broeckhove, J.: Economic grid resource management for CPU bound applications with hard deadlines. In: Proceedings of CCGrid 2008. IEEE Computer Society, Los Alamitos (in press, 2008)Google Scholar
  13. 13.
    Barr, R., Haas, Z.J., van Renesse, R.: Jist: An efficient approach to simulation using virtual machines. Software Practice and Experience 35, 539–576 (2005)CrossRefGoogle Scholar
  14. 14.
    Jacobs, P.H.M., Verbraeck, A.: Single-threaded specification of process-interaction formalism in java. In: Proceedings of the 36th conference on Winter simulation, pp. 1548–1555 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Wim Depoorter
    • 1
  • Nils De Moor
    • 1
  • Kurt Vanmechelen
    • 1
  • Jan Broeckhove
    • 1
  1. 1.University of AntwerpAntwerpBelgium

Personalised recommendations