Combine Analysis of Earth Orientation Parameters and~Gravity Field Coefficients for Mutual Validation

  • A Heiker
  • H Kutterer
  • J Müller
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 133)


The determination of the temporal variations of the Earth orientation parameters (EOP) and spherical harmonic coefficients of the gravity field are geodetic contributions to the analysis of global geodynamic processes. As the Earth’s tensor of inertia is functionally related both to the EOP via the Euler-Liouville equations and directly to the gravity field coefficients of degree 2 it allows the mutual validation of these two sets of parameters.

This paper proposes a statistically founded method of combining the temporal variations of the EOP and of the gravity field coefficients of degree 2 by a least-squares estimation based on the Gauss-Helmert model (condition equations with unknowns). Thereby statistically founded values for the unknown parameters can be derived, together with residuals for the observations, checkability and accuracy measures.

The EOP and gravity field coefficients of degree 2 are introduced as observations together with correction terms such as excitation functions of atmosphere and ocean. The results of the Gauss-Helmert model computed with gravity field coefficients from GRACE and the C04 series from the International Earth Rotation and Reference Systems Service are shown in this paper. If given standard deviations are taken into account and covariances are neglected the following results are obtained: Δlod is coupled with C20 and vice versa, C21 and S21 are coupled with the polar motion, but the polar motion itself and the gravity field coefficients C22 and S22 are not checked by any other parameter


Earth orientation parameters Gravity field coefficients Temporal variations Validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R. T. H., Hide, R., White, A. A., Wilson, C. A.: Atmospheric angular momentums fluctuations, length-of-day changes and polar motion Proc. R. Soc. Lond. A., 387, 31–78, 1983CrossRefGoogle Scholar
  2. Chao, B., Gross, R.: Changes in the earth’s rotation and low-degree gravitational field induced by earthquakes Geophys. J. Int., 91, 569–596, 1987CrossRefGoogle Scholar
  3. Earth Rotation Portal: (31.08.2007)Google Scholar
  4. GFZ Potsdam: index.html (31.08.2007)Google Scholar
  5. GGFC: (31.08.2007)Google Scholar
  6. Gross, R.: Correspondence between theory and observations of polar motion Geophys. J. Int., 109, 162–170, 1992CrossRefGoogle Scholar
  7. IERS: (31.08.2007)Google Scholar
  8. ISDC: (31.08.2007)Google Scholar
  9. Koch, K. R.: Parameter Estimation and Hypothesis Testing in Linear Models Springer, Berlin, 1987Google Scholar
  10. Lambeck, K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences Cambridge University Press, Cambridge, 1980Google Scholar
  11. Mathews, P. M., Herring, T. A., Buffett, B. A.: Modelling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior J. Geophys. Res., 107 (B4), 10.1029/2001B000390, 2002Google Scholar
  12. Moritz, H., Mueller, Ivan I.: Earth Rotation Ungar, New York, 1987Google Scholar
  13. McCarthy, D. D., Petit G. (eds.): IERS Conventions IERS Technical Notes No. 32, International Earth Rotation and Reference Systems Service (IERS). Verlag BKG, Frankfurt (Main), 2003Google Scholar
  14. Munk, W. H., MacDonald, G. J. F.: The Rotation of the Earth. A Geophysical Discussion Cambridge University Press, 1960Google Scholar
  15. Schmidt, R., Flechtner, F., König, U., Neumayer, K.H., Reighber, C., Rothacher, M., Petrovic, S., Zhu, S. Y. Güntner, A. GRACE Time-Variable Gravity Accuracy Assessment, in Tregoning, P. Rizos, P. (eds.): Dynamic planet, Monitoring and Understanding a Dynamic planet with Geodetic and Oceanographic Tools. IAG Symposium Cairns, Australia, 22–26. August 2005, 237–243, Springer, 2007Google Scholar
  16. Seitz, F.: Atmosphärische und ozeanische Einflüsse auf die Rotation der Erde DGK Reihe C, Nr. 578, 2004Google Scholar
  17. Sjöberg, L. E.: Adjustment and variance-covariance component estimation with a singular covariance matrix Zeitschrift für Vermessungswesen, 110, 145–151, 1985Google Scholar
  18. Standish, E. M.: JPL Planetary and Lunar Ephemerides DE405/LE405, Techn. Ber. IOM 312.F-98-048, JPL; Pasadena, 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A Heiker
    • 1
  • H Kutterer
    • 1
  • J Müller
    • 2
  1. 1.Geodätisches InstitutLeibniz Universität HannoverGermany
  2. 2.Institut für ErdmessungLeibniz Universität HannoverGermany

Personalised recommendations