Physical Modelling To Remove Hydrological Effects At Local And Regional Scale: Application To The 100-M Hydrostatic Inclinometer In Sainte-Croix-Aux-Mines (France)

  • L Longuevergne
  • L Oudin
  • N Florsch
  • F Boudin
  • J.P Boy
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 133)


New inclinometers devoted to hydrological studies were set up in the Vosges Mountains (France). Two orthogonal 100-m base hydrostatic inclinometers were installed in December 2004 as well as a hydrometeorological monitoring system for the 100-km2 hydrological unit around the inclinometer. As inclinometers are very sensitive to environmental influences, this observatory is a test site to confront hydrological modelling and geodetic observations. Physical modelling to remove hydrological effects without calibrating on geodetic data is tested on these instruments. Specifically, two deformation processes are most important: fluid pressure variations in nearby hydraulically active fractures and surface loading at regional scale


Hydrological Effect Geodetic Data Superconducting Gravimeter Global Land Data Assimilation System Hydrological Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnew, D. C. (1986). Strainmeters and tiltmeters, Rev. Geophys., 24, 579–624CrossRefGoogle Scholar
  2. Agnew, D. C. (2001). Map projections to show the possible effects of surface loading, J. Geod. Soc. Japan, 47, 255–260Google Scholar
  3. Bos, M.S., Baker, T.F. (2005). An estimate of the errors in gravity ocean tide loading computations. Geodesy 79(1): 50–63, doi: 10.1007/s00190-005-0442-5CrossRefGoogle Scholar
  4. Boudin, F. (2004) Développement d’un inclinomètre longue base pour des mesures tectoniques, thèse, université Paris-7, ParisGoogle Scholar
  5. Boudin, F., Bernard, P., Longuevergne, L., Florsch, N., Bour, O., Esnoult, M., Courteille, C., Caudal, J. (2007). A silica long base tiltmeter with high stability and resolution, submitted in Rev. Sci. InstrumGoogle Scholar
  6. Bower, D., Courtier, N. (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Int 106(3–4): 353–369, doi:10.1016/S0031-9201(97)00101-5CrossRefGoogle Scholar
  7. Boy, J.P., Hinderer, J. (2006) Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn. 41(1–3): 227–233, doi:10.1016/j.jog.2005.08.035CrossRefGoogle Scholar
  8. Crossley, D., Xu, S., van Dam, T. (1998). Comprehensive analysis of 2 years of SG data from table mountain, Colorado. In: Ducarme B., Paquet P. (eds) Proc. 13th Int. Symp. Earth Tides, Observatoire Royal de Belgique, Brussels, Schweizerbart’sche Verlagsbuchhandlung, pp 659–668Google Scholar
  9. Dal Moro, G., Zadro, M. (1998). Subsurface deformations induced by rainfall and atmospheric pressure: tilt/strain measurements in the NE-Italy seismic area, Earth Planet. Sci. Lett. 164, 193–203Google Scholar
  10. Dong, D., Fang, P., Bock, Y., Cheng, M. K., and Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res, 107(B4), doi:10.1029/2001JB000573Google Scholar
  11. Evans, K. and F. Wyatt (1984). “Water table effects on the measurement of earth strain,” Tectonophysics, vol. 108, pp. 323–337CrossRefGoogle Scholar
  12. Farrell, W.E. (1972). Deformation of the earth by surface loads, Rev. Geophys. Space Phys., 10, 761–97CrossRefGoogle Scholar
  13. Guo, J. Y., Li, Y. B., Huang, Y., Deng, H. T., Xu, S. Q. & Ning, J. S. (2004). Green’s function of the deformation of the Earth as a result of atmospheric loading. Geophys. J. Int. 159(1), 53–68. doi: 10.1111/j.1365-246X.2004.02410.xCrossRefGoogle Scholar
  14. Hasan, S. Troch, P., Boll, J., Kroner, C. (2006). Modeling of the hydrological effect on local gravity at Moxa, Germany. J Hydrometeor 7(3):346-354, doi:10.1175/JHM488.1CrossRefGoogle Scholar
  15. Kroner C., Jahr, T. (2006). Hydrological experiments around the superconducting gravimeter at Moxa Observatory. J Geodyn 41(1–3):268–275, doi:10.1016/j.jog.2005.08.012CrossRefGoogle Scholar
  16. Latynina, L.A., Abashizde, V.G., Alexandrov, Kapanadze, A.A., Karmaleeva, P.M., (1993). Deformation observations in epicentral areas. Fizika Zemli 3, 78–84, in RussianGoogle Scholar
  17. Le Moine, N., Andréassian, V., Perrin, C. and Michel C. (2007). How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments, Water Resour. Res, 43, W06428, doi:10.1029/2006WR005608CrossRefGoogle Scholar
  18. Lettemaier, D.P. (2005). Observations of the global water cycle – global monitoring networks in Encyclopedia of Hydrologic Sciences, vol. 5, edited by M.G. Anderson and J.J. McDonnel, pp. 2719–2732, John Wiley, Hoboken, N.JGoogle Scholar
  19. Llubes, M., N. Florsch, J. Hinderer, L. Longuevergne, and M. Amalvict (2004). Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: Some cases studies, J. Geodyn., 38, 355–374CrossRefGoogle Scholar
  20. Longuevergne, L., Florsch, N., Boudin, F., Vincent, T., Kammenthaler, M. (2006). Hydrology and geodesy : an hydrological perspective, BIM 142, 11387–11398Google Scholar
  21. Melchior (1973). Some problems of strain and tilt measurements, Phil. Trans. R. Soc. Lond. A. 203–208Google Scholar
  22. Meurers, B., Van Camp, M., Petermans, T. (2007). Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach station and application to Earth tide analysis. J Geodesy, in press, doi:10.1007/s00190-007-0137-1Google Scholar
  23. Milly, P. C. D., and A. B. Shmakin (2002). Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model, J. Hydrometeorol., 3(3), 283–299CrossRefGoogle Scholar
  24. Naujok, M., Kroner, C., Jahr, T., Krause, P., Weise, A. (2007). Gravimetric 3D modelling and observation of time-dependant gravity variations to improve small-scale hydrological modelling, IUGG meeting, Perugia, 2–13 July 2007Google Scholar
  25. Nash, J.E., et Sutcliffe, J.V. (1970). River flow forecasting through conceptual models, 1, A discussion of principles, J. Hydrol., 10, 282–290CrossRefGoogle Scholar
  26. Pagiatakis, S.D. (1990). The response of a realistic Earth to ocean tide loadings, Geophys. J. Int. 103 (1990) 541–560CrossRefGoogle Scholar
  27. Perrin, C., Michel, C., Andrassian, V. (2003). Improvement of a parsimonious model for stream flow simulation, J. Hydro. 279(1–4), 275–289CrossRefGoogle Scholar
  28. Rerolle, T., Florsch, N., Llubes, M., Boudin, F. Longuevergne, L. (2006). Inclinometry, a new tool for the monitoring of aquifers? C. R. Geoscience 338 (2006)Google Scholar
  29. Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, (2004). The global land data assimilation system. Bull. Amer. Meteor. Soc. 85, 381–394CrossRefGoogle Scholar
  30. Strangeways, I. (2003). Measuring the Natural Environment Cambridge University Press, Cambridge. doi:10.2277/0521529522Google Scholar
  31. Tervo, M., Virtanen, H., Bilker-Koivula, M., 2006, Environmental loading effects on GPS time series, Bull. d’Inf. Marées Terr. 142: 11407–11416Google Scholar
  32. Van Camp M., Vanclooster M., Crommen O., Petermans T., Verbeeck K., Meurers B., van Dam T., Dassargues A. (2006). Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations. J Geophys Res 111(B10403), doi:10.1029/2006JB004405Google Scholar
  33. Virtanen H., M. Tervo, M. Bilker-Koivula (2006). Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bull. d’Inf. Marées Terr. 142: 11361–11368Google Scholar
  34. Wolfe, J.E., Berg, E., Sutton, G.H. (1981). The change in strain comes mainly from the rain: Kippa, Oahu. Bull. Seismol. Soc. Am. 71, 1625–1635Google Scholar
  35. Yamauchi, T. (1987). Anomalous strain response to rainfall in relation to earthquake occurrence in the Tokai area, Japan J. Phys. Earth 35, 19–36Google Scholar
  36. Zadro M., Braitenberg C. (1999). Measurements and interpretations of tilt-strain gauges in seismically active areas, Earth Sci. Rev. 47, 151–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • L Longuevergne
    • 1
  • L Oudin
    • 1
  • N Florsch
    • 1
  • F Boudin
    • 2
  • J.P Boy
    • 3
  1. 1.UMR SisypheUniversité Pierre et Marie CurieFrance
  2. 2.Géosciences MontpellierUniversité Montpellier IIFrance
  3. 3.EOSTUniversité Louis PasteurFrance

Personalised recommendations