Advertisement

Analysis of Mass Variations in Northern Glacial Rebound Areas from GRACE Data

  • Holger Steffen
  • Jürgen Müller
  • Heiner Denker
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 133)

Abstract

Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission is mapping the Earth’s gravity field, showing variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. After reduction of oceanic and atmospheric contributions as well as tidal effects during the GRACE standard processing, monthly solutions of the gravity field are provided by several institutions. The solutions of the analysis centres differ slightly, which is due the application of different reduction models and centre-specific processing schemes. In addition, residual signals from insufficient pre-processing of the transmitted satellite data may be present

We present our investigation of mass variations in the areas of glacial isostatic adjustment (GIA) in North America and Northern Europe from GRACE data, especially from the latest release of the GFZ Potsdam. One key issue is the separation of GIA parts and the reduction of the observed quantities by applying dedicated filters and models of hydrological variations. In a further step, we analyse the results of both regions regarding their reliability, and finally a comparison to results from geodynamical modelling is presented. Our results clearly show that the quality of the GRACE-derived gravity change signal benefits from improved reduction models and dedicated analysis techniques. Nevertheless, the comparison to results of geodynamic models still reveals differences, and thus further studies are in progress

Keywords

GRACE Mass variation Glacial isostatic adjustment Global hydrology models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, J., Tapley, B., Wilson, C. (2006). Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet. Sci. Lett. 248, 368–378. doi:10.1016/j.eps1.2006.05.039CrossRefGoogle Scholar
  2. Döll, P., Kaspar, F., Lehner, B. (2003). A global hydrological model for deriving water avaiability indicators: model tuning and validation. J. Hydrol. 270, 105–134CrossRefGoogle Scholar
  3. Ekman, M. (1996). A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8, 158–165CrossRefGoogle Scholar
  4. Ekman, M., Mäkinen, J. (1996). Recent postglacial rebound, gravity change and mantle flow in Fennoscandia. Geophys. J. Int. 126, 229–234CrossRefGoogle Scholar
  5. Famiglietti, J. S., Chen, J. L., Rodell, M., Wilson, C. R. (2005). Terrestrial water storage variations from GRACE. In: New Satellite Mission Results for the Geopotential Fields and their Variations. C. Reigber and B. Tapley (Eds.). Special Issue of Advances in Geo-SciencesGoogle Scholar
  6. Frappart F., Ramillien, G., Biancamaria, S., Mognard, N. M., Cazenave, A. (2005). Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys. Res. Lett. 33, No. 2Google Scholar
  7. Han, S.-C., Shum, C. K., Jekeli, C., Alsdorf, D. (2005a). Improved estimation of terrestrial water storage changes from GRACE. Geophys. Res. Lett. 32, L07302CrossRefGoogle Scholar
  8. Han, S.-C., Shum, C. K., Jekeli, C., Kuo, C.-Y., Wilson, C. R., Seo, K.-W. (2005b). Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys. J. Int. 163, 18–25. doi:10.1111/j.1365-246X.2005.02756.xCrossRefGoogle Scholar
  9. Jekeli, C. (1981). Alternative methods to smooth the Earth s gravity field. Report No. 327, Department of Geodetic Science, Ohio State University, OhioGoogle Scholar
  10. Johansson, J. M., Davis, J. L., Scherneck, H.-G., Milne, G. A., Vermeer, M., Mitrovica, J. X., Bennett, R. A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B. O., Shapiro, I. I. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results, J. Geophys. Res. 107, doi:10.1029/2001JB000400Google Scholar
  11. Kaufmann, G. (2004). Program package ICEAGE, Version 2004. Manuscript, Institut für Geophysik der Universität Göttingen, 40 ppGoogle Scholar
  12. Kuo, C. Y., Shum, C. K., Braun, A., Mitrovica, J. X. (2004). Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia. Geophys. Res. Lett. 31, L01608, doi:10.1029/2003GL019106CrossRefGoogle Scholar
  13. Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geod., in press, doi:10.1007/s00190-007-0143-3Google Scholar
  14. Lambeck, K., Smither, C., Ekman, M. (1998). Tests of glacial Rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophys. J. Int. 135, 375–387CrossRefGoogle Scholar
  15. Lambert, A., Courtier, N., James, T. S. (2006). Long-term monitoring by absolute gravimetry: Tides to postglacial rebound J. Geodyn. 41, 307–317CrossRefGoogle Scholar
  16. Milly, P. C. D., Shmakin, A. B., Dunne, K. A. (2002). Global modeling of land water and energy balances. The Land Dynamics (LaD) Model. J. Hydromet. 3, 283–299CrossRefGoogle Scholar
  17. Milne, G. A., Davis, J. L., Mitrovica, J. X., Scherneck, H.-G., Johannson, J. M., Vermeer, M., Koivula, H. (2001). Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291, 2381–2385CrossRefGoogle Scholar
  18. Mitrovica, J. X. and Milne, G. A. (1998). Glaciation-induced perturbations in the Earth’s rotation: a new appraisal. J. Geophys. Res., 103, 985–1005Google Scholar
  19. Mitrovica, J. X., Davis, J. L., and Shapiro, I. I. (1994). A spectral formalism for computing three-dimensional deformations due to surface loads 1. Theory. J. Geophys. Res., 99 (B4), 7057–7073CrossRefGoogle Scholar
  20. Müller, J., Timmen, L., gitlein, O., Denker, H. (2005). Gravity changes in the Fennoscandian uplift area to be observed by GRACE and absolute gravimetry. In: Gravity, Geoid and Space Missions. C. Jekeli, L. Bastos, J. Fernandes (Eds.), Springer, IAG Symposia 129, 304–309Google Scholar
  21. Müller, J., Neumann-Redlin, M., Jarecki, F., Denker, H., Gitlein, O. (2006a). Gravity changes in northern Europe as observed by GRACE. In: Dynamic Planet. P. Tregoning, C. Rizos (Eds.), Springer, IAG Symp. 130, 523–527Google Scholar
  22. Müller, J., Neumann-Redlin, M., Denker, H. (2006b). Determination of mass variations in northern Europe from GRACE data. Reviewed Proceedings of the IGFS06 Meeting, held in Istanbul, Turkey, 28. Aug. 1. Sept 2006Google Scholar
  23. Munekane, H. (2007). Ocean mass variations from GRACE and tsunami gauges. J. Geophys. Res. 112, B07403, doi:10.1029/2006JB004618CrossRefGoogle Scholar
  24. Pagiatakis, S. D., Salib, P. (2003). Historical relative gravity observations and the time rate of change of gravity due to postglacial rebound and other tectonic movements in Canada. J. Geophys. Res. 108, B92406, doi:10.1029/2001JB001676CrossRefGoogle Scholar
  25. Peltier, W. R. (2004). GLOBAL glacial isostasy and the surface of the iceage earth: the ice-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149, doi:10.1146/annurev.earth.32.082503.144359CrossRefGoogle Scholar
  26. Sasgen, I., Martinec, Z., Fleming, K. (2006). Wiener optimal filtering of GRACE data. Stud. Geophys. Geod. 50(4), 499–508. doi:10.1007/s11200-006-0031-yCrossRefGoogle Scholar
  27. Scherneck, H.-G., Johannson, J. M., Koivula, H., van Dam, T., Davis, J. L. (2003). Vertical crustal motion observed in the BIFROST project. J. Geodyn. 35, 425–441CrossRefGoogle Scholar
  28. Schmidt, R., Schwintzer, P., Flechtner, F., Reigber, Ch., Güntner, A., Döll, P., Ramilien, G, Cazenave, A., Petrovic, S., Jochmann, H., Wünsch, J. (2006). GRACE observations of changes in continental water storage. Glob. Planet. Change 50, 112–126CrossRefGoogle Scholar
  29. Sella, G. F., Stein, S., Dixon, T. H., Craymer, M., James, T. S., Mazzotti, S., Dokka, R. K. (2007). Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, L02306, doi:10.1029/2006GL027081CrossRefGoogle Scholar
  30. Seo, K.-W., Wilson, C. R., Famiglietti, J. S., Chen, J. L., Rodell, M. (2006). Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 42, W05417, doi:10.1029/2005WR004255CrossRefGoogle Scholar
  31. Steffen, H., Kaufmann, G. (2005). Glacial isostatic adjustment of Scandinavia and northwestern Europe and the radial viscosity structure of the Earth’s mantle. Geophys. J. Int. 163(2), 801–812, doi: 10.1111/j.1365-246X.2005.02740.xGoogle Scholar
  32. Swenson, S. C., Milly, P. C. D. (2006). Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour. Res. 42, W03201, doi:10.1029/2005WR004628CrossRefGoogle Scholar
  33. Swenson, S., Wahr, J. (2006). Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402, doi:10.1029/2005GL025285CrossRefGoogle Scholar
  34. Tamisiea, M. E., Mitrovica, J. X., Davis, J. L. (2007). GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316, 881, doi:10.1126/science.1137157CrossRefGoogle Scholar
  35. Tapley, B., Bettadpur, S., Ries, J., Thompson, P., Watkins, M. (2004). GRACE measurements of mass variability in the Earth System. Science 305, 503–505CrossRefGoogle Scholar
  36. Timmen, L., Gitlein, O., Müller, J., Denker, H., Mäkinen, J., Bilker, M., Pettersen, B. R., Lysaker, D. I., Omang, O. C. D., Svendsen, J. G. G., wilmes, H., Falk, R., Reinhold, A., Hoppe, W., Scherneck, H.-G., Engen, B., Harsson, B. G., Engfeldt, A., Lilje, M., Strykowski, G., Forsberg, R. (2006). Observing Fennoscandian gravity change by absolute gravimetry. In: F. Sans, A. J. Gil (Eds.) “Geodetic Deformation Monitoring: From Geophysical to Engineering Roles”, Springer, IAG Symp. 131, 193–199Google Scholar
  37. van der Wal, W., Wu, P., Sideris, M. G. (2007). The use of GRACE data for postglacial rebound studies in North-America. J. Geodyn., in prepGoogle Scholar
  38. Velicogna, I., Wahr, J. (2004). Ice mass balance in Greenland from GRACE. Geophys. Res. Lett. 32/18, L18505, doi:10.1029/2005GL023955Google Scholar
  39. Wahr, J., Velicogna, I. (2002). What Might GRACE Contribute to Studies of Postglacial Rebound? Space Sciences Series of ISSI 18, Kluwer Academic Publishers, DordrechtGoogle Scholar
  40. Wahr, J., Molenaar, M., Bryan, F., (1998). Time variability of Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. B12, 30.205–30.230Google Scholar
  41. Wahr, J., Swenson, S., Velicogna, I., Zlotnicki, V. (2004). Time-variable gravity from GRACE: first results, Geophys. Res. Lett. 31, L11501, doi:10.1029/2004GL019779CrossRefGoogle Scholar
  42. Wilmes, H., Falk, R., Roland, E., Lothhammer, A., Reinhold, A., Richter, B., Plag, H.-P., Mäkinen, J. (2005). Long-term gravity variations in Scandinavia from repeated absolute gravity measurements in the period 1991 to 2003. Proceedings of IAG Symposium GGSM2004, PortoGoogle Scholar
  43. Yeh, P. J.-F., Swenson, S. C., Famiglietti, J. S., Rodell, M. (2006). Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 42, W12203, doi:10.1029/2006WR005374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Holger Steffen
    • 1
  • Jürgen Müller
    • 1
  • Heiner Denker
    • 1
  1. 1.Institut für ErdmessungLeibniz Universität HannoverGermany

Personalised recommendations