Robust Trend Estimation from GOCE SGG Satellite Track Cross-Over Differences

  • F Jarecki
  • J Müller
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 133)


Due to their outstanding accuracy and resolution, the innovative satellite gravity gradient (SGG) measurements from the European mission GOCE need dedicated calibration and validation procedures. It has been shown, that comparing the measurements in satellite track cross-overs offer an opportunity to get relative quality information, when applying a straight-forward reduction method. From SGG cross-over differences data sets, calibration parameters can be estimated. Here, the advantage of robust estimation methods over the standard least-squares approach for the analysis of short SGG cross-over data sets is shown. Simulated SGG data with different artificial trends are processed in different subsets. The least-squares approach is feasible to produce trend estimates from the cross-over differences of several days of measurements. Long-term trends can be estimated from cross-overs of a single revolution when applying robust estimation. Anticipating these estimation techniques, cross-over validation offers a fast approach to assess independently the quality of space gradiometry with focus on certain time intervals


Gravity satellite mission GOCE Gravity gradiometry Calibration Validation Cross-overs Robust parameter estimation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertella A, Migliaccio F, Sansó F, Tscherning C C (2000) The space-wise Approach – Overall Scientific Data Strategy, and Scientific Data Production Quality Assessment Using Local Space-Wise Approach. In Sünkel H, From Eötvös to Milligal Final Report, pp. 267–298 and 313–330. GrazGoogle Scholar
  2. Huber, P J (1981) Robust Statistics. John Wiley, New YorkGoogle Scholar
  3. Jarecki F, Müller J (2007) GOCE Gradiometer Validation in Satellite Track Cross-Overs. In: Kiliçoğlu A, Forsberg R (eds.), Proceedings of the 1st International Symposium of the International Gravity Field Service, “Gravity Field of the Earth”, 28 August – 1 September, 2006, Istanbul, Turkey. Harita Dergisi, Vol. 73, Special Issue 18, pp. 223–228. Harita Genel Komutanliği, AnkaraGoogle Scholar
  4. Jarecki F, Wolf K I, Denker H and Müller J (2006) Quality Assessment of GOCE Gradients. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds.), Observation of the Earth System from Space, pp. 271–285. Springer, BerlinCrossRefGoogle Scholar
  5. Koch, K R (1999) Parameter Estimation and Hypothesis Testing in Linear Models. Springer, BerlinGoogle Scholar
  6. Koop R, Bouman J, Schrama E J O, Visser P (2002) Calibration and Error Assessment of GOCE Data. In: Adam J and Schwarz K P (eds.), Vistas for Geodesy in the New Millenium, IAG Symp 125, pp. 167–174. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F Jarecki
    • 1
  • J Müller
    • 1
  1. 1.Institut für Erdmessung LeibnizUniversität HannoverSchneiderberg 50Germany

Personalised recommendations