Gravity Field Determination at the AIUB – The Celestial Mechanics Approach

  • L Prange
  • A Jäggi
  • G Beutler
  • R Dach
  • L Mervart
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 133)

Abstract

We present the gravity field model AIUB-CHAMP01S, which has been generated using the Celestial Mechanics approach. GPS-derived kinematic positions of low Earth orbiters (LEOs) are used as pseudo-observations to solve for the Earth’s gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic (SH) coefficients, arc-specific parameters (e.g., accelerometer calibration parameters, dynamical parameters, or pseudo-stochastic parameters) are set up and normal equations are written for all daily LEO arcs. The daily normal equations are combined to weekly, monthly, and annual systems before inversion. The parametrization can be modified on the normal equation level without a new time-consuming set up of the daily normal equations. The results based on one year of CHAMP data demonstrate that the Celestial Mechanics approach is comparable in quality with other approaches

Keywords

CHAMP Gravity field determination Pseudo-stochastic parameters Accelerometer data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler, G. (2005). Methods of Celestial Mechanics, Springer-VerlagGoogle Scholar
  2. Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher (1994). Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. In: Manuscripta Geodaetica, 19, 367–386Google Scholar
  3. Dach, R., U. Hugentobler, P. Fridez, M. Meindl (Eds.) (2007). Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Switzerland, 2007Google Scholar
  4. Ditmar, P., R. Klees, X. Liu (2007). Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. Journal of Geodesy, 81(81–96)CrossRefGoogle Scholar
  5. Förste, C., F. Flechtner, R. Schmidt, R. König, U. Meyer, R. Stubenvoll, M. Rothacher, F. Barthelmes, K.H. Neumayer, R. Biancale, S. Bruinsma, J.M. Lemoine (2006). A mean global gravity field model from the combination of satellite mission and altimetry/gravimetry surface gravity data – EIGEN-GL04C. In: Geophysical Research Abstracts, Vol. 8, European Geosciences UnionGoogle Scholar
  6. Heiskanen, W.A., H. Moritz (1967). Physical Geodesy. FreemanGoogle Scholar
  7. Hugentobler, U., S. Schaer, G. Weber et al. (2006). CODE IGS Analysis Center Technical Report 2003/2004. In: International GPS Service 2003–2004 Technical Report, IGS Central Bureau, JPL Pasadena, USAGoogle Scholar
  8. Jäggi, A. (2006). Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System. Ph.D. Thesis, Astronomical Institute, University of Bern, SwitzerlandGoogle Scholar
  9. Jäggi, A., G. Beutler, H. Bock, U. Hugentobler (2006). Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation. In: Dynamic Planet – Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools, edited by C. Rizos et al., pp. 354–361, SpringerGoogle Scholar
  10. Jäggi, A., G. Beutler, L. Prange, R. Dach (2008). Assessment of GPS observables for Gravity Field Recovery from GRACE. In: This volumeGoogle Scholar
  11. Lemoine F.G., F.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, C.M. Cox, S.M. Klosko, S.B. Luthke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, T.R. Olsen (1998). The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. In: NASA Technical Paper, NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, USAGoogle Scholar
  12. Mayer-Gürr T., K.H. Ilk, A. Eicker, M. Feuchtinger (2005). ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. Journal of Geodesy, 78, 462–480Google Scholar
  13. Reigber C., H. Lühr, P. Schwintzer (1998). Status of the CHAMP Mission. In: Towards an Integrated Global Geodetic Observing System (IGGOS), edited by R. Rummel, H. Drewes, W. Bosch, H. Hornik, Springer, Berlin, 63–65, 1998Google Scholar
  14. Reigber C., P. Schwintzer, K.H. Neumayer, F. Barthelmes, R. König, C. Förste, G. Balmino, R. Biancale, J.M. Lemoine, S. Loyer, S. Bruinsma, F. Perosanz, T. Fayard (2003). The CHAMP-only Earth Gravity Field Model EIGEN-2. In: Advances in Space Research, 31(8), 1883–1888CrossRefGoogle Scholar
  15. Reigber C., H. Jochmann, J. Wünsch, S. Petrovic, P. Schwintzer, F. Barthelmes, K.H. Neumayer, R. König, C. Förste, G. Balmino, R. Biancale, J.M. Lemoine, S. Loyer, F. Perosanz (2004). Earth Gravity Field and Seasonal Variability from CHAMP. In: Earth Observation from CHAMP – Results from Three Years in Orbit, edited by C. Reigber H. Lühr, P. Schwintzer, J. Wickert, Springer, Berlin, 25–30, 2004Google Scholar
  16. Wermuth M., D. Švehla, L. Földvary, C. Gerlach, T. Gruber, B. Frommknecht, T. Peters, M. Rothacher, R. Rummel, P. Steigenberger (2004). A gravity field model from two years of CHAMP kinematic orbits using the energy balance approach. In: Geophysical Research Abstracts, Vol. 6, European Geosciences UnionGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • L Prange
    • 1
  • A Jäggi
    • 1
  • G Beutler
    • 1
  • R Dach
    • 1
  • L Mervart
    • 1
  1. 1.Astronomical Institute (AIUB)University of BernSidlerstrasse 5Switzerland

Personalised recommendations