The Visual Expression Process: Bridging Vision and Data Visualization

  • Jose Fernando RodriguesJr.
  • Andre G. R. Balan
  • Agma J. M. Traina
  • Caetano TrainaJr.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5166)


Visual data analysis follows a sequence of steps derived from perceptual faculties that emanate from the human vision system. Firstly, pre-attentive phenomena determine a map of potential interesting objectives. Then, attentive selection concentrates on one element of a vocabulary of visual perceptions. Lastly, perceptions in working memory combine to long-term domain knowledge to support cognition. Following this process, we present a model that joins vision theory and visual data analysis aiming at settling a comprehension of why graphical presentations expand the human intellect, making us smarter.


Visual Perception Data Visualization Attentive Selection Information Visualization Phonological Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baddeley, A.D., Hitch, G.J.: Working memory. The psychology of learning and motivation: advances in research and theory 8, 47–89 (1974)CrossRefGoogle Scholar
  2. 2.
    Bertin, J.: Graphics and Graphic Information-Processing, 273 pages. Walter de Gruyter, Berlin (1977/1981)Google Scholar
  3. 3.
    Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  4. 4.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intel. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  5. 5.
    Jiang, Y., Olson, I.R., Chun, M.M.: Organization of visual short-term memory. Experimental Psychology: Learning, Memory, and Cognition 26(3), 683–702 (2000)CrossRefGoogle Scholar
  6. 6.
    Johnson, C., Moorhead, R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.: NIH/NSF Visualization Research Challenges, 36 pages. IEEE Press, Los Alamitos (2006)Google Scholar
  7. 7.
    Just, M.A., Carpenter, P.A.: A capacity theory of comprehension: individual differences in working memory. Psychological Review 99, 122–149 (1992)CrossRefGoogle Scholar
  8. 8.
    Kieras, D.E., Meyer, D.E.: An overview of the epic architecture for cognition and performance with application to human-computer interaction. HCI 12, 391–438 (2007)Google Scholar
  9. 9.
    Koffka, K.: Principles of Gestalt psychology. In: International library of psychology, philosophy and scientific method. Harcourt, Brace and Company, New York (1935)Google Scholar
  10. 10.
    Luck, S.J., Vogel, E.K.: The capacity of visual working memory for features and conjunctions. Nature 309, 279–281 (1997)CrossRefGoogle Scholar
  11. 11.
    Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Transactions on Graphics 5(2), 110–141 (1986)CrossRefGoogle Scholar
  12. 12.
    Motter, B.C.: Neural correlates of attentive selection for color or luminance in extrastriate area v4. The Journal of Neuroscience 14(4), 2178–2189 (1994)Google Scholar
  13. 13.
    Rodrigues Jr., J.F., Traina, A.J.M., Oliveira, M.C.F., Traina Jr., C.: Reviewing data visualization: an analytical taxonomical study. In: International Conference on Information Visualization, Londres, UK, pp. 713–720. IEEE Press, Los Alamitos (2006)Google Scholar
  14. 14.
    Rodrigues Jr., J.F., Traina, A.J.M., Oliveira, M.C.F., Traina Jr., C.: The spatial/perceptual design space: a new comprehension for data visualization. Information Visualization 6, 261–279 (2008)CrossRefGoogle Scholar
  15. 15.
    Thomas, J.J., Cook, K.A. (eds.): Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Press, Los Alamitos (2005)Google Scholar
  16. 16.
    Tsotsos, J.K.: The selective tuning model. In: Visual Attention Mechanisms, pp. 239–250. Kluwer Academic/Plenum Publishers (2003)Google Scholar
  17. 17.
    Ware, C.: Information Visualization: Perception for design, 486 pages. Morgan Kaufman, San Francisco (2004)Google Scholar
  18. 18.
    Watt, R.J.: Some speculations on the role of texture processing in visual perception. pp. 59–67. Massachusetts Institute of Technology, Cambridge (1995)Google Scholar
  19. 19.
    Young, R.M., Lewis, R.L.: The soar cognitive architecture and human working memory, pp. 224–256. Cambridge University Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jose Fernando RodriguesJr.
    • 1
  • Andre G. R. Balan
    • 1
  • Agma J. M. Traina
    • 1
  • Caetano TrainaJr.
    • 1
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil

Personalised recommendations