Technical Applications

  • N. Bayat
  • A. Nethe
  • J.M. Guldbakke
  • J. Hesselbach
  • V.A. Naletova
  • H.-D. Stahlmann
  • E. Uhlmann
  • K. Zimmermann
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 763)

Abstract

New controllable, active and adaptive materials like ferrofluids enable scientific engineering disciplines to carry out fundamental research investigations and to develop innovative technical applications. Thereby, the properties of ferrofluids, their modeling as well as relevant requirements to ferrofluids with regard to their different technical applications represent the main focus of investigations, which were carried out simultaneously within the scope of a priority research program. The wide spectra of reported investigations and applications include the use of ferrofluids in actuators and in rotating or linear electrical drives, in biologically inspired locomotion systems, in fine positioning systems, in lubricated systems as well as in adaptive bearings and dampers. The specific requirements to ferrofluids deviated from corresponding technical applications can differ completely, so that general requirements to ferrofluids are concretised in a higher degree. Results of fundamental investigations as well as results of experimental investigations based on developed prototypes will be described and discussed in this chapter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehner, G.: Elektromagnetische Feldtheorie. Springer-Verlag (1990)Google Scholar
  2. Michalowsky, L.: Magnettechnik, Grundlagen und Anwendungen, Fachbuchverlag Leipzig GmbH (1995)Google Scholar
  3. Boll, R.: Weichmagnetische Werkstoffe. Vacuumschmelze GmbH, Siemens AG (1990)Google Scholar
  4. Nethe, A., H.-D. Stahlmann (eds.): Einführung in die Feldtheorie. Köster (2003)Google Scholar
  5. Maxwell, J.Cl.: Lehrbuch der Elektrizität und des Magnetismus. Springer-Verlag (1883)Google Scholar
  6. Hoffmann, H.: Das elektromagnetische Feld. Springer-Verlag (1986)Google Scholar
  7. Hoffmann, H.: Über den Kraftangriff des stationären elektromagnetischen Feldes an der Materie. öst. Ing. Arch. 10(4) (1956)Google Scholar
  8. Hoffmann, H.: Über den Kraftangriff des Magnetfeldes an Elementarströmen. Öst. Ing. Arch. 11(1) (1957)Google Scholar
  9. Hoffmann, H.: Kräfte und Feldstärken im elektromagnetischen Feld. In: öst. Ing. Arch. 11(1) (1957)Google Scholar
  10. Nethe A., Stahlmann, H.-D.: Remarks on the interaction between magnetic core coils in the presence of magnetic fluids. J. Magn. Magn. Mater. 189, 255–262 (1998)CrossRefADSGoogle Scholar
  11. Nethe, A., Schöppe, Th., Stahlmann, H.-D.: Ferrofluid driven actuator for a left ventricular assist device. J. Magn. Magn. Mater. 201, 423–426 (1999)CrossRefADSGoogle Scholar
  12. Nethe, A., Scholz, Th., Stahlmann: H.-D.: Ferrofluids – A Numerical Process Model. Trans. Magn. 38, 1177–1180 (2002)CrossRefADSGoogle Scholar
  13. Schieber, D.: Electromagnetic Induction Phenomena. Springer Series in Electrophysics 16, Springer-Verlag (1986)Google Scholar
  14. Guyon, E., Hulin, J.-P., Petit, L.: Hydrodynamik. Vieweg-Verlag (1997)Google Scholar
  15. Nethe: A., Stahlmann, H.-D.: Remarks on the interaction between magnetic core coils in the presence of magnetic fluids. J. Magn. Magn. Mater. 189, 255–262 (1998)CrossRefADSGoogle Scholar
  16. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Stepanov, G.V., Lukashevich, M.V.: Undulation of magnetizable elastic body in magnetic field. In: Proc. of Moscow International Symposium on Magnetism, June 25–30, 2005. M.V. Lomonosov Moscow State University, Faculty of Physics Publisher pp. 85–89 (2005)Google Scholar
  17. Zimmermann, K., Zeidis, I., Naletova, V.A., Stepanov, G.V., Turkov, V.A., Lukashevich, M.V.: Undulation of magnetizable elastic body in magnetic field. In: Book of Abstracts, Moscow International Symposium on Magnetism, June 25–30, 2005. M.V. Lomonosov Moscow State University, Faculty of Physics Publisher pp. 181–182 (2005)Google Scholar
  18. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Stepanov: G.V., behavior of a magnetizable worm in a magetic field. In: Technische Universität Ilmenau. 50. Internationales Wissenschaftliches Kolloquium, September 19–23, 2005, ‘‘Mechanical Engineering from Macro to Nano’’ 399–400 (2005)Google Scholar
  19. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Bayburtskiy, F.S., Lukashevich, M.V., Böhm: V.: Elastic Capsule Filled with Magnetic Fluid in an Alternative Magnetic Field. Submitted to the 6th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, May 17–20, 2006 Krems, Austria (2006)Google Scholar
  20. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A.: Waves on the surface of a magnetic fluid layer in a traveling magnetic field. J. Magn. Magn. Mater. 268(1–2) 227–231 (2004)CrossRefADSGoogle Scholar
  21. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A.: Traveling waves on a free surface of a magnetic fluid layer. J. Magn. Magn. Mater. 272–276, 2343–2344 (2004)CrossRefGoogle Scholar
  22. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Bachurin, V.E.: Locomotion based on two-layers flow of magnetizable nanosuspentions. In: Joint European Magnetic Symposia (September 5–10, 2004, Dresden, Germany) p. 134 (2004)Google Scholar
  23. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Bachurin, V.E.: Locomotion based on two-layers flow of magnetizable nanosuspentions. J. Magn. Magn. Mater. 290–201, 808, 808–810 (2005)CrossRefGoogle Scholar
  24. Zimmermann, K., Zeidis, I., Naletova, V.A., Turkov, V.A., Bachurin, V.E.: Magnetic fuid layer on a cylinder in a travelling magnetic field. Zeitschift für Physikalische Chemie 220 (117), 117–124. (2006) 370CrossRefGoogle Scholar
  25. Cebers, A.: Flexible magnetic swimmer. Magnetohydrodynamics 41(1), 63–72 (2005)ADSGoogle Scholar
  26. Kikura, H., Sawada, T., Tanahashi, T., Seo, L.S.: Propagation of surface waves of magnetic fluid in traveling magnetic fields. J. Magn. Magn. Mater. 85 167–170 (1990)CrossRefADSGoogle Scholar
  27. Saga, N., Nakamura, T.: Elucidation of propulsive force of microrobot using magnetic fluid. J. Appl. Phys. 91(10), 7003–7005 (2002)CrossRefADSGoogle Scholar
  28. Turkov, V.A: Deformation of an elastic composite involving a magnetic fluid. J. Magn. Magn. Mater. 252, 156–158 (2002)CrossRefADSGoogle Scholar
  29. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1993)Google Scholar
  30. Bayat, N.: Neue Einsatzmöglichkeiten von Ferrofluiden in technischen Systemen mit relativ zueinander bewegten Komponenten. Fraunhofer IRB-Verlag (2005)Google Scholar
  31. Uhlmann, E., Bayat, N.: Applications of Ferrofluids in Bearings and Positioning Systems. Production Engineering X/1, 125–128 (2003)Google Scholar
  32. Uhlmann, E., Bayat, N.: Investigations on Ferrofluidic Positioning Systems. Production Engineering XI/2, 195–198 (2004)Google Scholar
  33. Uhlmann, E., Bayat, N.: Soft-Positioning mit Ferrofluiden. ZWF-Zeitschrift für wirtschaftlichen Fabrikbetrieb 98(12), 688–691 (2003)Google Scholar
  34. Uhlmann, E., Bayat, N.: Positioniersysteme mit magnetischen Flüssigkeiten. ZWF-Zeitschrift für wirtschaftlichen Fabrikbetrieb 100(10), 573–576 (2005)Google Scholar
  35. Uhlmann, E., Bayat, N.: High Precision Positioning with Ferrofluids as an Active Medium. Annals of the CIRP 55(1) (2206), acc. 386, 387, 388, 389, 391, 392, 393, 394Google Scholar
  36. Uhlmann, E., Schäper, E., Bayat, N.: Einrichtung zum Positionieren eines Körpers. German patent DE 102 44867Google Scholar
  37. Rosensweig, R.E.: Ferrohydrodynamics. Dover publications Mineola (1998)Google Scholar
  38. Behrens, S., et al.: Air-stable Co-, Fe-, and Fe/Co-Nanoparticles and Ferrofluids. Z. Phys. Chem.-Zeitschrift für Physikalische Chemie 220, 3–40 (2006)CrossRefGoogle Scholar
  39. Rowe, W.B.: Hydrostatic and Hydrid Bearing Design. Butterworth &,Co.,(1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • N. Bayat
    • 1
  • A. Nethe
    • 2
  • J.M. Guldbakke
    • 3
  • J. Hesselbach
    • 3
  • V.A. Naletova
    • 4
  • H.-D. Stahlmann
    • 2
  • E. Uhlmann
    • 1
  • K. Zimmermann
    • 5
  1. 1.Institute for Machine Tools and Factory ManagementUniversity of Technology, BerlinGermany
  2. 2.Chair of Electromagnetic Theory and Process ModellingBrandenburg University of Technology, Cottbus03046 CottbusGermany
  3. 3.Institute of Machine Tools and Production Technology, TU Braunschweig38106 BraunschweigGermany
  4. 4.Department of Mechanics and MathematicsM.V.Lomonosov Moscow State UniversityLeninskye goryRussia
  5. 5.Faculty of Mechanical EngineeringTechnische Universität Ilmenau98684 IlmenauGermany

Personalised recommendations