We consider the problem of testing functions for the property of being a k-junta (i.e., of depending on at most k variables). Fischer, Kindler, Ron, Safra, and Samorodnitsky (J. Comput. Sys. Sci., 2004) showed that \(\tilde{O}(k^2)/\epsilon\) queries are sufficient to test k-juntas, and conjectured that this bound is optimal for non-adaptive testing algorithms.

Our main result is a non-adaptive algorithm for testing k-juntas with \(\tilde{O}(k^{3/2})/\epsilon\) queries. This algorithm disproves the conjecture of Fischer et al.

We also show that the query complexity of non-adaptive algorithms for testing juntas has a lower bound of \(\min \big(\tilde{\Omega}(k/\epsilon), 2^k/k\big)\), essentially improving on the previous best lower bound of Ω(k).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atıcı, A., Servedio, R.A.: Quantum algorithms for learning and testing juntas. Quantum Information Processing 6(5), 323–348 (2007)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs and non-approximability – towards tight results. SIAM J. Comput. 27(3), 804–915 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernstein, A.J.: Maximally connected arrays on the n-cube. SIAM J. Appl. Math. 15(6), 1485–1489 (1967)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blum, A.: Relevant examples and relevant features: thoughts from computational learning theory. In: AAAI Fall Symposium on ‘Relevance’ (1994)Google Scholar
  5. 5.
    Blum, A.: Learning a function of r relevant variables. In: Proc. 16th Conference on Computational Learning Theory, pp. 731–733 (2003)Google Scholar
  6. 6.
    Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97(2), 245–271 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bollobás, B.: Combinatorics, Cambridge (1986)Google Scholar
  8. 8.
    Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Processing Letters 90(6), 301–305 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A., Wan, A.: Testing for concise representations. In: Proc. 48th Symposium on Foundations of Computer Science, pp. 549–558 (2007)Google Scholar
  10. 10.
    Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. J. Comput. Syst. Sci. 68(4), 753–787 (2004)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gonen, M., Ron, D.: On the benefits of adaptivity in property testing of dense graphs. In: Proc. 11th Workshop RANDOM, pp. 525–539 (2007)Google Scholar
  12. 12.
    Guijarro, D., Tarui, J., Tsukiji, T.: Finding relevant variables in PAC model with membership queries. In: Proc. 10th Conference on Algorithmic Learning Theory, pp. 313–322 (1999)Google Scholar
  13. 13.
    Harper, L.H.: Optimal assignments of numbers to vertices. SIAM J. Appl. Math. 12(1), 131–135 (1964)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hart, S.: A note on the edges of the n-cube. Disc. Math. 14, 157–163 (1976)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In: Proc. 29th Sym. on Foundations of Computer Science, pp. 68–80 (1988)Google Scholar
  16. 16.
    Lipton, R.J., Markakis, E., Mehta, A., Vishnoi, N.K.: On the Fourier spectrum of symmetric boolean functions with applications to learning symmetric juntas. In: Proc. 20th Conference on Computational Complexity, pp. 112–119 (2005)Google Scholar
  17. 17.
    Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant variables. J. Comput. Syst. Sci. 69(3), 421–434 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J. Discret. Math. 16(1), 20–46 (2003)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM J. Comput. 25(2), 252–271 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Yao, A.C.: Probabilistic computations: towards a unified measure of complexity. In: Proc. 18th Sym. on Foundations of Comput. Sci., pp. 222–227 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Eric Blais
    • 1
  1. 1.Carnegie Mellon University 

Personalised recommendations