Budgeted Allocations in the Full-Information Setting

  • Aravind Srinivasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5171)

Abstract

We build on the work of Andelman & Mansour and Azar, Birnbaum, Karlin, Mathieu & Thach Nguyen to show that the full-information (i.e., offline) budgeted-allocation problem can be approximated to within 4/3: we conduct a rounding of the natural LP relaxation, for which our algorithm matches the known lower-bound on the integrality gap.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)MATHMathSciNetGoogle Scholar
  2. 2.
    Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Azar, Y., Birnbaum, B., Karlin, A.R., Mathieu, C., Nguyen, C.T.: Improved approximation algorithms for budgeted allocations. In: Aceto, L., Damgåvd, I., Goldberg, L.A., Halldórsson, M.M., Ingolfsdóttir, A., Walukiewicz, I. (eds.) ICALP. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 253–264. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP (manuscript)Google Scholar
  6. 6.
    Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. In: FOCS, pp. 667–676 (2006)Google Scholar
  7. 7.
    Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to approximation algorithms. J. ACM 53(3), 324–360 (2006)MathSciNetGoogle Scholar
  8. 8.
    Garg, R., Kumar, V., Pandit, V.: Approximation algorithms for budget-constrained auctions. In: RANDOM-APPROX, pp. 102–113 (2001)Google Scholar
  9. 9.
    Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to Adwords. In: SODA, pp. 982–991 (2008)Google Scholar
  10. 10.
    Lahaie, S., Pennock, D.M., Saberi, A., Vohra, R.V.: Sponsored search auctions. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, ch. 28, pp. 699–716. Cambridge University Press, Cambridge (2007)Google Scholar
  11. 11.
    Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized online matching. J. ACM 54(5) (2007)Google Scholar
  13. 13.
    Srinivasan, A.: Distributions on level-sets with applications to approximation algorithms. In: FOCS, pp. 588–597 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aravind Srinivasan
    • 1
  1. 1.Dept. of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege Park

Personalised recommendations