Semantics of Deterministic Shared-Memory Systems

  • Rémi Morin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5201)


We investigate a general model of concurrency for shared-memory systems. We introduce some intuitive interleaving semantics within the general framework of automata with concurrency relations and connect it to some partial order approach. Then our main result identifies the expressive power of finite deterministic shared-memory systems with the notion of regular consistent sets of labeled partial orders. We characterize also by means of a coherence property the languages recognized by deadlock-free systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Grosu, R.: Shared Variables Interaction Diagrams. In: 16th IEEE Int. Conf. on Automated Software Engineering, pp. 281–288. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  2. 2.
    Arnold, A.: An extension of the notion of traces and asynchronous automata. RAIRO, Theoretical Informatics and Applications 25, 355–393 (1991)MATHGoogle Scholar
  3. 3.
    Baudru, N., Morin, R.: Safe Implementability of Regular Message Sequence Charts Specifications. In: Proc. of the ACIS 4th Int. Conf. SNDP, pp. 210–217 (2003)Google Scholar
  4. 4.
    Bednarczyk, M.: Categories of Asynchronous Systems. Ph.D. (Univ. of Sussex, 1988) Google Scholar
  5. 5.
    Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous cellular automata. I&C 106, 159–202 (1993)MATHGoogle Scholar
  6. 6.
    Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  7. 7.
    Diekert, V., Métivier, Y.: Partial Commutation and Traces. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 457–534 (1997)Google Scholar
  8. 8.
    Droste, M.: Concurrency, automata and domains. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 195–208. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  9. 9.
    Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. TCS 247, 1–38 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Duboc, C.: Mixed product and asynchronous automata. TCS 48, 183–199 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fanchon, J., Morin, R.: Regular Sets of Pomsets with Autoconcurrency. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory of Regular MSC Languages. I&C 202, 1–38 (2005)MATHMathSciNetGoogle Scholar
  13. 13.
    Kuske, D.: Regular sets of infinite message sequence charts. I&C 187, 80–109 (2003)MATHMathSciNetGoogle Scholar
  14. 14.
    Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 558–565 (1978)MATHCrossRefGoogle Scholar
  15. 15.
    Mazurkiewicz, A.: Trace theory. LNCS, vol. 255, pp. 279–324. Springer, Heiedelberg (1987)Google Scholar
  16. 16.
    Morin, R.: Concurrent Automata vs. Asynchronous Systems. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 686–698. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Morin R.: Logic for Unambiguous Shared-Memory Systems. In: DLT 2008. LNCS. Springer, Heidelberg (accepted, 2008)Google Scholar
  18. 18.
    Mukund, M.: From global specifications to distributed implementations. In: Synthesis and Control of Discrete Event Systems, pp. 19–34. Kluwer, Dordrecht (2002)Google Scholar
  19. 19.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, events structures and domains, part 1. TCS 13, 85–108 (1981)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pratt, V.: Modelling concurrency with partial orders. International Journal of Parallel Programming 15, 33–71 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sassone, V., Nielsen, M., Winskel, G.: Deterministic Behavioural Models for Concurrency (Extended Abstract). In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 682–692. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Ştefãnescu, A., Esparza, J., Muscholl, A.: Synthesis of distributed algorithms using asynchronous automata. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 20–34. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)MATHGoogle Scholar
  24. 24.
    Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and Applications 21, 99–135 (1987)MATHMathSciNetGoogle Scholar
  25. 25.
    Zielonka, W.: Safe executions of recognizable trace languages by asynchronous automata. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 278–289. Springer, Heidelberg (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rémi Morin
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de MarseilleAix-Marseille université — UMR 6166 — CNRSMarseille Cedex 9France

Personalised recommendations