Advertisement

Abstraction for Stochastic Systems by Erlang’s Method of Stages

  • Joost-Pieter Katoen
  • Daniel Klink
  • Martin Leucker
  • Verena Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5201)

Abstract

This paper proposes a novel abstraction technique based on Erlang’s method of stages for continuous-time Markov chains (CTMCs). As abstract models Erlang-k interval processes are proposed where state residence times are governed by Poisson processes and transition probabilities are specified by intervals. We provide a three-valued semantics of CSL (Continuous Stochastic Logic) for Erlang-k interval processes, and show that both affirmative and negative verification results are preserved by our abstraction. The feasibility of our technique is demonstrated by a quantitative analysis of an enzyme-catalyzed substrate conversion, a well-known case study from biochemistry.

Keywords

Model Check Poisson Process Stochastic System Goal State Markov Decision Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time Markov chains. ACM TOCL 1, 162–170 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. TCS 345, 2–26 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE TSE 29, 524–541 (2003)Google Scholar
  4. 4.
    Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Information and Computation 200, 149–214 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bower, J.M., Bolouri, H.: Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Busch, H., Sandmann, W., Wolf, V.: A numerical aggregation algorithm for the enzyme-catalyzed substrate conversion. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 298–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42, 857–907 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    de Alfaro, L., Pritam, R.: Magnifying-lens abstraction for Markov decision processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 325–338. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. I. John Wiley & Sons, Inc., Chichester (1968)zbMATHGoogle Scholar
  12. 12.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. TCS 274, 43–87 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Kampen, N.G.v.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)Google Scholar
  16. 16.
    Katoen, J.-P., Kemna, T., Zapreev, I., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 87–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time Markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 316–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Abstraction for stochastic systems by Erlang’s method of stages. Technical Report AIB-2008-12, RWTH Aachen University (2008)Google Scholar
  19. 19.
    Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov decision processes. In: QEST, pp. 157–166. IEEE CS Press, Los Alamitos (2006)Google Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Mamoun, M.B., Pekergin, N., Younes, S.: Model checking of CTMCs by closed-form bounding distributions. In: QEST, pp. 189–199. IEEE CS Press, Los Alamitos (2006)Google Scholar
  22. 22.
    Remke, A., Haverkort, B., Cloth, L.: CSL model checking algorithms for QBDs. TCS 382, 24–41 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ross, S.: Stochastic Processes. John Wiley and Sons, Chichester (1996)zbMATHGoogle Scholar
  24. 24.
    Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1995)Google Scholar
  26. 26.
    Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace machines for observing continuous-time Markov chains. ENTCS 153, 259–277 (2004)Google Scholar
  27. 27.
    Younes, H., Simmons, R.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. and Comp. 204, 1368–1409 (2007)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhang, L., Hermanns, H., Eisenbrand, F., Jansen, D.N.: Flow faster: efficient decision algorithms for probabilistic simulations. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 155–170. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joost-Pieter Katoen
    • 1
  • Daniel Klink
    • 1
  • Martin Leucker
    • 2
  • Verena Wolf
    • 3
  1. 1.RWTH Aachen University 
  2. 2.TU Munich 
  3. 3.EPF Lausanne 

Personalised recommendations