On the Construction of Sorted Reactive Systems

  • Lars Birkedal
  • Søren Debois
  • Thomas Hildebrandt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5201)


We develop a theory of sorted bigraphical reactive systems.

Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand. Here we present a general construction of sortings. The constructed sortings always sustain the behavioural theory of pure bigraphs (in a precise sense), thus obviating the need to redevelop that theory for each new application. As an example, we recover Milner’s local bigraphs as a sorting on pure bigraphs.

Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more natural sortings, as witnessed by our recovery of local bigraphs as a sorting.


Reactive System Behavioural Theory Binding Signature Commutative Monoid Transition Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computation 204(1), 60–122 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Milner, R., Leifer, J.J.: Transition systems, link graphs and Petri nets. Technical Report 598, U. of Cambridge Computer Laboratory (2004)Google Scholar
  3. 3.
    Milner, R.: Bigraphs whose names have multiple locality. Technical Report 603, U. of Cambridge Computer Laboratory (2004)Google Scholar
  4. 4.
    Jensen, O.H., Milner, R.: Bigraphs and mobile processes (revised). Technical Report 580, U. of Cambridge Computer Laboratory (2004)Google Scholar
  5. 5.
    Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Jensen, O.H.: Mobile Processes in Bigraphs. PhD thesis, U. of Aalborg (forthcoming 2008)Google Scholar
  7. 7.
    Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: PPDP 2006, pp. 1–12 (2006)Google Scholar
  8. 8.
    Grohmann, D., Miculan, M.: Reactive systems over directed bigraphs. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 380–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Bundgaard, M., Hildebrandt, T.: Bigraphical semantics of higher-order mobile embedded resources with local names. In: GT-VC 2005. ENTCS, vol. 154, pp. 7–29 (2006)Google Scholar
  10. 10.
    Milner, R.: Local bigraphs and confluence: Two conjectures. In: EXPRESS 2006, pp. 42–50 (2006)Google Scholar
  11. 11.
    Birkedal, L., Debois, S., Elsborg, E., Hildebrandt, T., Niss, H.: Bigraphical Models of Context-aware Systems. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Leifer, J.J.: Operational Congruences for Reactive Systems. PhD thesis, U. of Cambridge Computer Laboratory and Trinity College (2001)Google Scholar
  14. 14.
    Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer Science 274(1–2), 183–230 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Birkedal, L., Debois, S., Hildebrandt, T.: Sortings for reactive systems. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 248–262. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Debois, S.: Sortings and Bigraphs. PhD thesis, IT University of Copenhagen (2008),
  17. 17.
    Leifer, J.J.: Synthesising labelled transitions and operational congruences in reactive systems, part 2. Technical Report RR-4395, INRIA (2002)Google Scholar
  18. 18.
    Conforti, G., Macedonio, D., Sassone, V.: Spatial logics for bigraphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 766–778. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Sassone, V., Sobocinski, P.: Deriving bisimulation congruences: 2-categories vs. precategories. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 409–424. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS 2005, pp. 311–320. IEEE, Los Alamitos (2005)Google Scholar
  21. 21.
    Milner, R.: Personal communication (2006)Google Scholar
  22. 22.
    Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lars Birkedal
    • 1
  • Søren Debois
    • 1
  • Thomas Hildebrandt
    • 1
  1. 1.Programming, Logic and Semantics GroupIT University of Copenhagen 

Personalised recommendations