Advertisement

Unfolding-Based Diagnosis of Systems with an Evolving Topology

  • Paolo Baldan
  • Thomas Chatain
  • Stefan Haar
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5201)

Abstract

We propose a framework for model-based diagnosis of systems with mobility and variable topologies, modelled as graph transformation systems. Generally speaking, model-based diagnosis is aimed at constructing explanations of observed faulty behaviours on the basis of a given model of the system. Since the number of possible explanations may be huge we exploit the unfolding as a compact data structure to store them, along the lines of previous work dealing with Petri net models. Given a model of a system and an observation, the explanations can be constructed by unfolding the model constrained by the observation, and then removing incomplete explanations in a pruning phase. The theory is formalised in a general categorical setting: constraining the system by the observation corresponds to taking a product in the chosen category of graph grammars, so that the correctness of the procedure can be proved by using the fact that the unfolding is a right adjoint and thus it preserves products. The theory thus should be easily applicable to a wide class of system models, including graph grammars and Petri nets.

Keywords

Discrete Event System Type Graph Graph Grammar Variable Topology Typing Morphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures and processes. Information and Computation 171(1), 1–49 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding semantics of graph transformation. Information and Computation 205, 733–782 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baldan, P., Haar, S., König, B.: Distributed unfolding of Petri nets. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 126–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Baldan, P., Chatain, T., Haar, S., König, B.: Unfolding-based diagnosis of systems with an evolving topology. Technical Report 2008-2, Abteilung für Informatik und Angewandte Kognitionswissenschaft, Universität Duisburg-Essen (2008)Google Scholar
  5. 5.
    Benveniste, A., Fabre, E., Haar, S., Jard, C.: Diagnosis of asynchronous discrete event systems, a net unfolding approach. IEEE Transactions on Automatic Control 48(5), 714–727 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bruni, R., Melgratti, H.C.: Non-sequential behaviour of dynamic nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 105–124. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  8. 8.
    Chatain, T., Jard, C.: Models for the supervision of web services orchestration with dynamic changes. In: AICT/SAPIR/ELETE, pp. 446–451. IEEE, Los Alamitos (2005)Google Scholar
  9. 9.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent and asynchronous systems. Journal of Discrete Event Dynamic Systems 15(1), 33–84 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haar, S., Benveniste, A., Fabre, E., Jard, C.: Partial order diagnosability of discrete event systems using Petri net unfoldings. In: Proc. 42nd IEEE Conf. on Decision and Control (CDC) (2003)Google Scholar
  12. 12.
    Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO – Theoretical Informatics and Applications 39(3) (2005)Google Scholar
  13. 13.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109, 181–224 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Löwe, M., Korff, M., Wagner, A.: An Algebraic Framework for the Transformation of Attributed Graphs. In: Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C. (eds.) Term Graph Rewriting: Theory and Practice, pp. 185–199. Wiley, Chichester (1993)Google Scholar
  15. 15.
    Sampath, M., Sengupta, R., Sinnamohideen, K., Lafortune, S., Teneketzis, D.: Failure diagnosis using discrete event models. IEEE Trans. on Systems Technology 4(2), 105–124 (1996)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Yoo, T.-S., Lafortune, S.: Diagnosis of discrete event systems using decentralized architectures. Discrete Event Dynamic Systems 17(2), 233–263 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Thomas Chatain
    • 2
  • Stefan Haar
    • 3
  • Barbara König
    • 4
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità di PadovaItaly
  2. 2.LSV, ENS Cachan, CNRS, INRIAFrance
  3. 3.INRIA, France, and University of OttawaCanada
  4. 4.Abteilung für Informatik und Angewandte KognitionswissenschaftUniversität Duisburg-EssenGermany

Personalised recommendations