Invariants for Parameterised Boolean Equation Systems

(Extended Abstract)
  • Simona Orzan
  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5201)


The concept of invariance for Parameterised Boolean Equation Systems (PBESs) is studied in greater detail. We identify a weakness with the associated theory and fix this problem by proposing a stronger notion of invariance called global invariance. A precise correspondence is proven between the solution of a PBES and the solution of its invariant-strengthened version; this enables one to exploit global invariants when solving PBESs. Furthermore, we show that global invariants are robust w.r.t. all common PBES transformations and that the existing encodings of verification problems into PBESs preserve the invariants of the processes involved. These traits provide additional support for our notion of global invariants, and, moreover, provide an easy manner for transferring (e.g. automatically discovered) process invariants to PBESs. Several examples are provided that illustrate the advantages of using global invariants in various verification problems.


Equation System Process Invariant Local Invariant Global Invariant Predicate Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezem, M.A., Groote, J.F.: Invariants in process algebra with data. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 401–416. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised boolean equation systems. In: Proceedings of ICTAC 2008 (to appear, 2008)Google Scholar
  4. 4.
    Gallardo, M.M., Joubert, C., Merino, P.: Implementing influence analysis using parameterised boolean equation systems. In: Proceedings of ISOLA 2006. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  5. 5.
    Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput. Program 56(3), 251–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput. Sci 343(3), 332–369 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technische Universität München (1997)Google Scholar
  9. 9.
    Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-calculus. In: Proc. 2nd Int’l Workshop on VMCAI (September 1998)Google Scholar
  10. 10.
    Mateescu, R.: Vérification des propriétés temporelles des programmes paralléles. PhD thesis, Institut National Polytechnique de Grenoble (1998)Google Scholar
  11. 11.
    Orzan, S.M., Willemse, T.A.C.: Invariants for parameterised boolean equation systems. CS-Report 08-17, Eindhoven University of Technology (2008)Google Scholar
  12. 12.
    Pandav, S., Slind, K., Gopalakrishnan, G.: Counterexample guided invariant discovery for parameterized cache coherence verification. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 317–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods in System Design 32(1), 25–55 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Mathematics 5(2), 285–309 (1955)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Zhang, D., Cleaveland, R.: Fast generic model-checking for data-based systems. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 83–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simona Orzan
    • 1
  • Tim A. C. Willemse
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations