Advertisement

Evaluation of Graylevel-Features for Printing Technique Classification in High-Throughput Document Management Systems

  • Christian Schulze
  • Marco Schreyer
  • Armin Stahl
  • Thomas M. Breuel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5158)

Abstract

The detection of altered or forged documents is an important tool in large scale office automation. Printing technique examination can therefore be a valuable source of information to determine a questioned documents authenticity. A study of graylevel features for high throughput printing technique recognition was undertaken. The evaluation included printouts generated by 49 different laser and 13 different inkjet printers. Furthermore, the extracted document features were classified using three different machine learning approaches. We were able to show that, under the given constraints of high-throughput systems, it is possible to determine the printing technique used to create a document.

Keywords

feature evaluation printing technique classification counterfight detection questioned document document forensic document management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chim, J.L.C., Li, C.K., Poon, N.L., Leung, S.C.: Examination of counterfeit banknotes printed by all-in-one color inkjet printers. Journal of the American Society of Questioned Document Examiners (ASQDE) 7(2), 69–75 (2004)Google Scholar
  2. 2.
    Li, C.K., Leung, S.C.: The identification of color photocopiers: A case study. Journal of the American Society of Questioned Document Examiners (ASQDE) 1(1), 8–11 (1998)Google Scholar
  3. 3.
    Makris, J.D., Krezias, S.A., Athanasopoulou, V.T.: Examination of newspapers. Journal of the American Society of Questioned Document Examiners (ASQDE) 9(2), 71–75 (2006)Google Scholar
  4. 4.
    Parker, J.L.: An instance of inkjet printer identification. Journal of the American Society of Questioned Document Examiners (ASQDE) 5(1), 5–10 (2002)Google Scholar
  5. 5.
    Kelly, J.S., Lindblom, B.S.: Scientfic Examination of Questioned Documents, 2nd edn. CRC Press, Boca Raton (2006)Google Scholar
  6. 6.
    Osborn, A.S., Osborn, A.D.: Questioned documents. Journal of the American Society of Questioned Document Examiners (ASQDE) 5(1), 39–44 (2002)MathSciNetGoogle Scholar
  7. 7.
    Hilton, O.: Scientific Examination of Questioned Documents, 1st edn. CRC Press, Boca Raton (1993)Google Scholar
  8. 8.
    Ellen, D.: The Scientific Examination of Documents, 2nd edn. Taylor and Francis, Abington (1997)Google Scholar
  9. 9.
    Nickell, J.: Detecting Forgery: Forensic Investigations of Documents, 1st edn. University Press of Kentucky (2005)Google Scholar
  10. 10.
    Oliver, J., Chen, J.: Use of signature analysis to discrimnate digital printing technologies. In: Proceedings of the IS&T‘s NIP18: International Conference on Digital Printing Technologies, pp. 218–222 (2002)Google Scholar
  11. 11.
    Mikkilineni, A., Ali, G., Chiang, P.J., Chiu, G.C., Allebach, J., Delp, E.: Printer identification based on texture features. In: Proceedings of the IS&T‘s NIP20: International Conference on Digital Printing Technologies, Salt Lake City, UT, vol. 20, pp. 306–311 (2004)Google Scholar
  12. 12.
    Mikkilineni, A., Ali, G., Chiang, P.J., Chiu, G.C., Allebach, J., Delp, E.: Printer identification based on graylevel co-occurance features for security and forensic applications. In: Proceedings of the SPIE International Conference on Security, Steganography and Watermarking of Multimedia Contents VII, San Jose, CA, vol. 5681, pp. 430–440 (2005)Google Scholar
  13. 13.
    Tchan, J.: The development of an image analysis system that can detect fraudulent alterations made to printed images. In: van Renesse, R.F. (ed.) Optical Security and Counterfeit Deterrence Techniques V, Proceedings of the SPIE, vol. 5310, pp. 151–159 (2004); Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5310, pp. 151–159 (June 2004)Google Scholar
  14. 14.
    Dasari, H., Bhagvati, C.: Identification of printing process using hsv colour space. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 692–701. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Tweedy, J.S.: Class chracteristics of counterfeit protection system codes of color laser copiers. Journal of the American Society of Questioned Document Examiners (ASQDE) 4(2), 53–66 (2001)Google Scholar
  16. 16.
    Li, C.K., Chan, W.C., Cheng, Y.S., Leung, S.C.: The differentation of color laser printers. Journal of the American Society of Questioned Document Examiners (ASQDE) 7(2), 105–109 (2004)Google Scholar
  17. 17.
    Akao, Y., Kobayashi, K., Sugawara, S., Seki, Y.: Discrimnation of inkjet printed counterfeits by spur marks and feature extraction by spatial frequency analysis. In: van Renesse, R.F. (ed.) Optical Security and Counterfeit Deterrence Techniques V, Proceedings of the SPIE, vol. 5310, pp. 151–159 (2004); Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 5310, pp. 129–137 (June 2004)Google Scholar
  18. 18.
    Akao, Y., Kobayashi, K., Seki, Y.: Examination of spur marks found on inkjet-printed documents. Journal of Forensic Science 50(4), 915–923 (2005)CrossRefGoogle Scholar
  19. 19.
    Lampert, C.H., Mei, L., Breuel, T.M.: Printing technique classification for document counterfeit detection. In: Wang, Y., Cheung, Y.-m., Liu, H. (eds.) CIS 2006. LNCS (LNAI), vol. 4456. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Qu, L.: Image based printing technique recognition. Project Thesis (May 2006)Google Scholar
  21. 21.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man and Cybernetics (9), 62–66 (1979)Google Scholar
  22. 22.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall International, Englewood Cliffs (2007)Google Scholar
  23. 23.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc, San Francisco (1993)Google Scholar
  24. 24.
    Rumelhart, D., Hinton, G., Williams, R.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, pp. 318–362. MIT-Press, Cambridge (1986)Google Scholar
  25. 25.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Schulze
    • 1
  • Marco Schreyer
    • 1
  • Armin Stahl
    • 1
  • Thomas M. Breuel
    • 1
  1. 1.German Research Center for Artificial Intelligence (DFKI)University of KaiserslauternKaiserslauternGermany

Personalised recommendations