Analogical Translation of Medical Words in Different Languages

  • Philippe Langlais
  • François Yvon
  • Pierre Zweigenbaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5221)


Term translation has become a recurring need in many domains. This creates an interest for robust methods which can translate words in various languages. We propose a novel, analogy-based method to generate word translations. It relies on a partial bilingual lexicon and solves bilingual analogical equations to create candidate translations. We evaluate our approach on medical terms. To study the robustness of the method, we evaluate it on a series of datasets taken from different language groups and using different scripts. We investigate to which extend the approach can cope directly with multiword terms, and study its dependency to the size of the training set.


Target Word Analogical Translation Input Word Parallel Corpus Language Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iacobini, C.: Composizione con elementi neoclassici. In: Grossmann, M., Rainer, F. (eds.) La formazione delle parole in italiano, Niemeyer, Tübingen, pp. 69–95 (2004)Google Scholar
  2. 2.
    Namer, F., Baud, R.: Predicting lexical relations between biomedical terms: towards a multilingual morphosemantics-based system. In: Stud Health Technol Inform., vol. 116, pp. 793–798. IOS Press, Amsterdam (2005)Google Scholar
  3. 3.
    Schulz, S., Markó, K., Sbrissia, E., Nohama, P., Hahn, U.: Cognate mapping - a heuristic strategy for the semi-supervised acquisition of a Spanish lexicon from a Portuguese seed lexicon. In: Proc 20th International Conference on Computational Linguistics (COLING 2004), Genève, Suisse, pp. 813–819 (2004)Google Scholar
  4. 4.
    Claveau, V., Zweigenbaum, P.: Translating biomedical terms by inferring transducers. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 236–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Deléger, L., Merkel, M., Zweigenbaum, P.: Using word alignment to extend multilingual medical terminologies. In: Zweigenbaum, P., Schulz, S., Ruch, P. (eds.) Proc LREC Workshop Acquiring and representing multilingual, specialized lexicons: the case of biomedicine, Genoa, Italy,ELDA, pp. 9–14 (2006)Google Scholar
  6. 6.
    Fung, P., Yee, L.Y.: An IR approach for translating new words from non-parallel, comparable texts. In: Proceedings of the 36th ACL, Montréal, August 1998, pp. 414–420 (1998)Google Scholar
  7. 7.
    Hahn, U., Honeck, M., Piotrowski, M., Schulz, S.: Subword segmentation: Leveling out morphological variations for medical document retrieval. J. Am. Med. Inform. Assoc. 8, 229–233 (2001)Google Scholar
  8. 8.
    Namer, F., Zweigenbaum, P.: Acquiring meaning for French medical terminology: contribution of morphosemantics. In: Fieschi, M., Coiera, E., Li, Y.C.J. (eds.) Proc 10th World Congress on Medical Informatics. Studies in Health Technology and Informatics, vol. 107, pp. 535–539. IOS Press, Amsterdam (2004)Google Scholar
  9. 9.
    Creutz, M., Lagus, K.: Morfessor in the morpho challenge. In: Proceedings of the PASCAL Challenge Workshop on Unsupervised segmentation of words into morphemes, Venice, Italy (2006)Google Scholar
  10. 10.
    Lepage, Y.: Solving analogies on words: an algorithm. In: COLING-ACL, Montréal, Canada, pp. 728–734 (1998)Google Scholar
  11. 11.
    Stroppa, N., Yvon, F.: An analogical learner for morphological analysis. In: 9th Conf. on Computational Natural Language Learning (CoNLL), Ann Arbor, MI, pp. 120–127 (2005)Google Scholar
  12. 12.
    Langlais, P., Patry, A.: Translating unknown words by analogical learning. In: Proc. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague, Czech Republic, pp. 877–886Google Scholar
  13. 13.
    Lindberg, D.A.B., Humphreys, B.L., McCray, A.T.: The Unified Medical Language System. Methods Inf. Med. 32(2), 81–91 (1993)Google Scholar
  14. 14.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, New York (1999)Google Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, pp. 707–710 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Philippe Langlais
    • 1
  • François Yvon
    • 2
  • Pierre Zweigenbaum
    • 2
  1. 1.Dept I.R.O.Université de MontréalQuébecCanada
  2. 2.CNRS, LIMSIOrsayFrance

Personalised recommendations