An Integrated Approach for Identifying Relevant Factors Influencing Software Development Productivity

  • Adam Trendowicz
  • Michael Ochs
  • Axel Wickenkamp
  • Jürgen Münch
  • Yasushi Ishigai
  • Takashi Kawaguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5082)


Managing software development productivity and effort are key issues in software organizations. Identifying the most relevant factors influencing project performance is essential for implementing business strategies by selecting and adjusting proper improvement activities. There is, however, a large number of potential influencing factors. This paper proposes a novel approach for identifying the most relevant factors influencing software development productivity. The method elicits relevant factors by integrating data analysis and expert judgment approaches by means of a multi-criteria decision support technique. Empirical evaluation of the method in an industrial context has indicated that it delivers a different set of factors compared to individual data- and expert-based factor selection methods. Moreover, application of the integrated method significantly improves the performance of effort estimation in terms of accuracy and precision. Finally, the study did not replicate the observation of similar investigations regarding improved estimation performance on the factor sets reduced by a data-based selection method.


Software development productivity influencing factors factor selection effort estimation 


  1. 1.
    Auer, M., Trendowicz, A., Graser, B., Haunschmid, E., Biffl, S.: Optimal project feature weights in analogy-based cost estimation: improvement and limitations. IEEE Transactions on Software Engineering 32(2), 83–92 (2006)CrossRefGoogle Scholar
  2. 2.
    Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R., Refer, D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  3. 3.
    Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)zbMATHGoogle Scholar
  4. 4.
    Briand, L., Basili, V., Thomas, W.: A Pattern Recognition Approach for Software Engineering Data Analysis. IEEE Transactions on Software Engineering 18(11), 931–942 (1992)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis by Example, 3rd edn. Wiley, Chichester (1999)zbMATHGoogle Scholar
  6. 6.
    Chen, Z., Menzies, T., Port, D., Boehm, B.: Finding the right data for software cost modeling. IEEE Software 22(6), 38–46 (2005)CrossRefGoogle Scholar
  7. 7.
    Conte, S., Dunsmore, H., Shen, V.Y.: Software Engineering Metrics and Models. Benjamin Cummings, CA (1986)Google Scholar
  8. 8.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  9. 9.
    Jönsson, P., Wohlin, C.: An Evaluation of k-Nearest Neighbour Imputation Using Likert Data. In: 10th Int’l Symposium on Software Metrics, pp. 108–118 (2005)Google Scholar
  10. 10.
    Kirsopp, C., Shepperd, M., Hart, J.: Search Heuristics, Case-based Reasoning and Software Project Effort Prediction. In: Genetic and Evolutionary Computation Conference, pp. 1367–1374 (2002)Google Scholar
  11. 11.
    Li, J., Ruhe, G.: A comparative study of attribute weighting heuristics for effort estimation by analogy. In: International Symposium on Empirical Software Engineering, pp. 66–74 (2006)Google Scholar
  12. 12.
    Liang, T., Noore, A.: Multistage software estimation. In: 35th Southeastern Symposium on System Theory, pp. 232–236 (2003)Google Scholar
  13. 13.
    Maxwell, K.D., Van Wassenhove, L., Dutta, S.: Software development productivity of European space, military, and industrial applications. IEEE Transactions on Software Engineering 22(10), 706–718 (1996)CrossRefGoogle Scholar
  14. 14.
    Myrtveit, I., Stensrud, E., Olsson, U.H.: Analyzing data sets with missing data: An empirical evaluation of imputation methods and likelihood-based methods. IEEE Transactions Software Engineering 27, 999–1013 (2001)CrossRefGoogle Scholar
  15. 15.
    Ochs, M., Pfahl, D., Chrobok-Diening, G., Nothhelfer-Kolb, B.: A Method for efficient measurement-based COTS Assessment & Selection – method description and evaluation results. In: 7th International Software Metrics Symposium (2001)Google Scholar
  16. 16.
    Robnik-Sikonja, M., Kononenko, I.: Theoretical and Empirical Analysis of ReliefF and RRreliefF. The Machine Learning Journal 53, 23–69 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1990)zbMATHGoogle Scholar
  18. 18.
    Schillinger, D.: Entwicklung eines simulationsfähigen COTS Assessment und Selection Tools auf Basis eines für Software adequaten hierarchischen MCDM Meta Modells. Ms Thesis, Dept. of Computer Science, TU Kaiserslautern (Supervisors): Prof. Dr. D. Rombach, Michael Ochs, Kaiserslautern, Germany (2006)Google Scholar
  19. 19.
    Shepperd, M., Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE Transactions on Software Engineering 23(12), 736–743 (1997)CrossRefGoogle Scholar
  20. 20.
    Sheskin, D.J., Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. Chapman & Hall/CRC (2000)Google Scholar
  21. 21.
    Spector, P.: Summated Rating Scale Construction. Sage Publications, Thousand Oaks (1992)CrossRefGoogle Scholar
  22. 22.
    Subramanian, G.H., Breslawski, S.: Dimensionality reduction in software development effort estimation. Journal of Systems and Software 21(2), 187–196 (1993)CrossRefGoogle Scholar
  23. 23.
    The Standish Group. CHAOS Chronicles. West Yarmouth, MA (2003)Google Scholar
  24. 24.
    Trendowicz, A., Heidrich, J., Münch, J., Ishigai, Y., Yokoyama, K., Kikuchi, N.: Development of a Hybrid Cost Estimation Model in an Iterative Manner. In: 28th International Conference on Software Engineering, Shanghai, China, pp. 331–340 (2006)Google Scholar
  25. 25.
    Vincke, P.: Multicriteria Decision-aid. John Wiley & Sons, Chichester (1992)zbMATHGoogle Scholar
  26. 26.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  27. 27.
    Trendowicz, A.: Factors Influencing Software Development Productivity - State of the Art and Industrial Experiences. Report no. 008.07/E. Fraunhofer IESE, Kaiserslautern, Germany (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Adam Trendowicz
    • 1
  • Michael Ochs
    • 1
  • Axel Wickenkamp
    • 1
  • Jürgen Münch
    • 1
  • Yasushi Ishigai
    • 2
    • 3
  • Takashi Kawaguchi
    • 4
  1. 1.Fraunhofer IESEKaiserslauternGermany
  2. 2.IPA-SECTokyoJapan
  3. 3.Research Center for Information Technology Mitsubishi Research InstituteIncTokyoJapan
  4. 4.Toshiba Information Systems (Japan) CorporationKawasaki-CityJapan

Personalised recommendations