Deterministic Models of Communication Faults

  • Rastislav Královič
  • Richard Královič
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5162)


In this paper we survey some results concerning the impact of faulty environments on the solvability and complexity of communication tasks. In particular, we focus on deterministic models of faults in synchronous networks, and show how different variations of the model influence the performance bounds of broadcasting algorithms.


Complete Graph Communication Graph Star Graph Faulty Node Dynamic Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Thrifty generic broadcast. In: DISC 2000: Proceedings of the 14th International Conference on Distributed Computing, London, UK, pp. 268–282. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Ahlswede, R., Gargano, L., Haroutunian, H.S., Khachatrian, L.H.: Fault-tolerant minimum broadcast networks. Networks 27 (1996)Google Scholar
  3. 3.
    Ahlswede, R., Haroutunian, H., Khachatrian, L.H.: Messy broadcasting in networks. In: Blahut, Costello, Maurer, Mittelholzer (eds.) Communications and Cryptography: Two Sides of One Tapestry. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  4. 4.
    Bagchi, A., Hakimi, S.L.: Information dissemination in distributed systems with faulty units. IEEE Transactions on Computers 43(6), 698–710 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Berman, P., Diks, K., Pelc, A.: Reliable broadcasting in logarithmic time with Byzantine link failures. Journal of Algorithms 22(2), 199–211 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bermond, J.-C., Marlin, N., Peleg, D., Perennes, S.: Directed virtual path layouts in atm networks. Theoretical Computer Science 291(1), 3–28 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bienstock, D.: Broadcasting with random faults. Discrete Applied Mathematics 20(1), 1–7 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bruck, J.: On optimal broadcasting in faulty hypercubes. Discrete Applied Mathematics 53(1–3), 3–13 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chlebus, B., Diks, K., Pelc, A.: Broadcasting in synchronous networks with dynamic faults. Networks 27 (1996)Google Scholar
  11. 11.
    Chlebus, B.S., Diks, K., Pelc, A.: Optimal broadcasting in faulty hypercubes. In: FTCS, pp. 266–273 (1991)Google Scholar
  12. 12.
    Chlebus, B.S., Diks, K., Pelc, A.: Waking up an anonymous faulty network from a single source. In: HICSS (2), pp. 187–193 (1994)Google Scholar
  13. 13.
    Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theoretical Computer Science 326(1–3), 343–362 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Diks, K., Kranakis, E., Pelc, A.: Broadcasting in unlabeled tori. Parallel Processing Letters 8(2), 177–188 (1998)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Diks, K., Pelc, A.: Almost safe gossiping in bounded degree networks. SIAM Journal on Discrete Mathematics 5(3), 338–344 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Dobrev, S., Královič, R., Královič, R., Santoro, N.: On fractional dynamic faults with threshold. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dobrev, S., Královič, R., Pardubská, D.: Leader election in simple threshold model. Dept. of Computer Science, Comenius University, Bratislava, Slovakia (unpublished manuscript, 2008)Google Scholar
  18. 18.
    Dobrev, S., Vrt̆o, I.: Optimal broadcasting in hypercubes with dynamic faults. Information Processing Letters, 71(2), 81–85 (1999)Google Scholar
  19. 19.
    Dobrev, S., Vrt̆o, I.: Optimal broadcasting in tori with dynamic faults. Parallel Processing Letters 12(1), 17–22 (2002)Google Scholar
  20. 20.
    Dobrev, S., Vrt̆o, I.: Dynamic faults have small effect on broadcasting in hypercubes. Discrete Applied Mathematics 137(2), 155–158 (2004)Google Scholar
  21. 21.
    Even, S., Monien, B.: On the number of rounds necessary to disseminate information. In: SPAA 1989: Proceedings of the first annual ACM symposium on Parallel algorithms and architectures, pp. 318–327. ACM Press, New York (1989)CrossRefGoogle Scholar
  22. 22.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Flocchini, P., Mans, B.: Optimal elections in labeled hypercubes. Journal of Parallel and Distributed Computing 33(1), 76–83 (1996)CrossRefGoogle Scholar
  24. 24.
    Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definitions, properties, and classes. Networks 32(3), 165–180 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Fragopoulou, P., Akl, S.G.: Edge-disjoint spanning trees on the star network with applications to fault tolerance. IEEE Transactions on Computers 45(2), 174–185 (1996)zbMATHCrossRefGoogle Scholar
  26. 26.
    Fraigniaud, P.: Asymptotically optimal broadcasting and gossiping in faulty hypercube multicomputers. IEEE Transactions on Computers 41(11), 1410–1419 (1992)CrossRefGoogle Scholar
  27. 27.
    Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual networks. In: Proceedings of the international workshop on Broadcasting and gossiping 1990, pp. 79–133. Elsevier North-Holland, Inc., New York (1994)Google Scholar
  28. 28.
    Fraigniaud, P., Peyrat, C.: Broadcasting in a hypercube when some calls fail. Information Processing Letters 39(3), 115–119 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Gargano, L., Liestman, A.L., Peters, J.G., Richards, D.: Reliable broadcasting. Discrete Applied Mathematics 53(1-3), 135–148 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Gargano, L., Rescigno, A.A.: Communication complexity of fault-tolerant information diffusion. Theoretical Computer Science 209(1–2), 195–211 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Gargano, L., Rescigno, A.A., Vaccaro, U.: Minimum time broadcast in faulty star networks. Discrete Applied Mathematics 83(1-3), 97–119 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gargano, L., Vaccaro, U., Vozella, A.: Fault tolerant routing in the star and pancake interconnection networks. Information Processing Letters 45(6), 315–320 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Gasieniec, L., Pelc, A.: Adaptive broadcasting with faulty nodes. Parallel Computing 22(6), 903–912 (1996)zbMATHCrossRefGoogle Scholar
  34. 34.
    Gasieniec, L., Pelc, A.: Broadcasting with a bounded fraction of faulty nodes. Journal of Parallel and Distributed Computing 42(1), 11–20 (1997)CrossRefGoogle Scholar
  35. 35.
    Gasieniec, L., Pelc, A.: Broadcasting with linearly bounded transmission faults. Discrete Applied Mathematics 83(1–3), 121–133 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Han, Y.J., Igarashi, Y., Kanai, K., Miura, K.: Broadcasting in faulty binary jumping networks. Journal of Parallel and Distributed Computing 23(3), 462–467 (1994)CrossRefGoogle Scholar
  37. 37.
    Hedetniemi, S., Hedetniemi, S., Liestman, A.: A survey of broadcasting and gossiping in communication networks. Networks 18, 319–349 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting and gossiping). In: Du, D.-Z., Hsu, D. (eds.) Combinatorial Network Theory, pp. 125–212. Kluwer Academic Publishers, Netherlands (1996)Google Scholar
  39. 39.
    Jovanovic, Z., Misic, J.: Fault tolerance of the star graph interconnection network. Information Processing Letters 49(3), 145–150 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio networks of unknown topology. In: FOCS 2002: Proceedings of the 43rd Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 63–72. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  41. 41.
    Královič, R., Královič, R., Ružička, P.: Broadcasting with many faulty links. In: Sibeyn, J.F. (ed.) SIROCCO. Proceedings in Informatics, vol. 17, pp. 211–222. Carleton Scientific (2003)Google Scholar
  42. 42.
    Královič, R.: Broadcasting with dynamic faults. Phd. thesis, Dept. of Computer Science, Comenius University, Bratislava, Slovakia (2008)Google Scholar
  43. 43.
    Královič, R., Královič, R.: Rapid Almost-Complete Broadcasting in Faulty Networks. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 246–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  44. 44.
    Kranakis, E., Paquette, M., Pelc, A.: Communication in Networks with Random Dependent Faults. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 418–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  45. 45.
    Latifi, S.: On the fault-diameter of the star graph. Information Processing Letters 46(3), 143–150 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Liptak, Z., Nickelsen, A.: Broadcasting in complete networks with dynamic edge faults. In: Butelle, F. (ed.) OPODIS, Studia Informatica Universalis, Suger, Saint-Denis, rue Catulienne, France, pp. 123–142 (2000)Google Scholar
  47. 47.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1996)zbMATHGoogle Scholar
  48. 48.
    Marco, G.D., Rescigno, A.A.: Tighter time bounds on broadcasting in torus networks in presence of dynamic faults. Parallel Processing Letters 10(1), 39–49 (2000)zbMATHCrossRefGoogle Scholar
  49. 49.
    Marco, G.D., Vaccaro, U.: Broadcasting in hypercubes and star graphs with dynamic faults. Information Processing Letters 66(6), 321–326 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Mendia, V.E., Sarkar, D.: Optimal broadcasting on the star graph. IEEE Transactions on Parallel and Distributed Systems 3(4), 389–396 (1992)CrossRefMathSciNetGoogle Scholar
  51. 51.
    Pelc, A.: Broadcasting in complete networks with faulty nodes using unreliable calls. Information Processing Letters 40(3), 169–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Pelc, A.: Fault-tolerant broadcasting and gossiping in communication networks. networks 28(3), 143–156 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Pelc, A., Peleg, D.: Broadcasting with locally bounded Byzantine faults. Information Processing Letters 93(3), 109–115 (2005)CrossRefMathSciNetGoogle Scholar
  54. 54.
    Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission failures. In: PODC 2005: Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium on Principles of distributed computing, Las Vegas, NV, USA, pp. 334–341. ACM Press, New York, NY, USA (2005)CrossRefGoogle Scholar
  55. 55.
    Peleg, D.: A note on optimal time broadcast in faulty hypercubes. Journal of Parallel and Distributed Computing 26(1), 132–135 (1995)zbMATHCrossRefGoogle Scholar
  56. 56.
    Ramanathan, P., Shin, K.G.: Reliable broadcast in hypercube multicomputers. IEEE Transactions on Computers 37(12), 1654–1657 (1988)CrossRefGoogle Scholar
  57. 57.
    Santoro, N., Widmayer, P.: Distributed function evaluation in the presence of transmission faults. In: SIGAL 1990, pp. 358–367. Springer, Heidelberg (1990)Google Scholar
  58. 58.
    Schiper, A.: Group Communication: From Practice to Theory. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 117–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  59. 59.
    Schoone, A., Bodlaender, H., van Leeuwen, J.: Diameter increase caused by edge deletion. J. Graph Theory 11, 409–427 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Tel, G.: Introduction to distributed algorithms. Cambridge University Press, New York, NY, USA (1994)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rastislav Královič
    • 1
  • Richard Královič
    • 1
    • 2
  1. 1.Department of Computer ScienceComenius UniversityMlynská dolinaSlovakia
  2. 2.Department of Computer Science ETH ZurichSwitzerland

Personalised recommendations