Arithmetic Circuits, Syntactic Multilinearity, and the Limitations of Skew Formulae

  • Meena Mahajan
  • B. V. Raghavendra Rao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5162)


Functions in arithmetic NC 1 are known to have equivalent constant width polynomial degree circuits, but the converse containment is unknown. In a partial answer to this question, we show that syntactic multilinear circuits of constant width and polynomial degree can be depth-reduced, though the resulting circuits need not be syntactic multilinear. We then focus specifically on polynomial-size syntactic multilinear circuits, and study relationships between classes of functions obtained by imposing various resource (width, depth, degree) restrictions on these circuits. Along the way, we obtain a characterisation of NC 1 (and its arithmetic counterparts) in terms of log width restricted planar branching programs. We also study the power of skew formulae, and show that even exponential sums of these are unlikely to suffice to express the determinant function.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Allender, E., Datta, S.: On TC0, AC0, and arithmetic circuits. Journal of Computer and System Sciences 60(2), 395–421 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli (2004)Google Scholar
  3. 3.
    Allender, E., Ambainis, A., Barrington, D.A., Datta, S., LêThanh, H.: Bounded depth arithmetic circuits: Counting and closure. In: International Colloquium on Automata, Languages, and Programming ICALP, ICALP 1999, pp. 149–158 (1999)Google Scholar
  4. 4.
    Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences 38(1), 150–164 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM J. Comput. 21(1), 54–58 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Borodin, A., Razborov, A.A., Smolensky, R.: On lower bounds for read-k-times branching programs. Computational Complexity 3, 1–18 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Brent, R.P.: The parallel evaluation of arithmetic expressions in logarithmic time. In: Complexity of sequential and parallel numerical algorithms (Proc. Sympos. Carnegie-Mellon Univ., Pittsburgh, Pa., 1973), pp. 83–102. Academic Press, New York (1973)Google Scholar
  8. 8.
    Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. In: Algorithms and Computation in Mathematics. Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic Complexity Theory. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  10. 10.
    Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System Sciences 57, 200–212 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Istrail, S., Zivkovic, D.: Bounded width polynomial size Boolean formulas compute exactly those functions in AC0 . Information Processing Letters 50, 211–216 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC\(^{\mbox{1}}\) and L. ECCC TR07-087 (2007). Preliminary version appeared in STACS 2007Google Scholar
  13. 13.
    Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. In: STOC, pp. 633–641 (2004)Google Scholar
  14. 14.
    Raz, R.: Multilinear-NC1 ≠ multilinear-NC2. In: FOCS, pp. 344–351 (2004)Google Scholar
  15. 15.
    Raz, R., Yehudayoff, A.: Balancing syntactically multilinear arithmetic circuits. In: Computational Complexity (to appear)Google Scholar
  16. 16.
    Spira, P.M.: On time hardware complexity tradeoffs for boolean functions. In: Fourth Hawaii International Symposium on System Sciences, pp. 525–527 (1971)Google Scholar
  17. 17.
    Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math. Univ. of Electro-Communications, Tokyo (1991)Google Scholar
  18. 18.
    Valiant, L.G.: Completeness classes in algebra. In: Symposium on Theory of Computing STOC, pp. 249–261 (1979)Google Scholar
  19. 19.
    Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM Journal on Computing 21, 655–670 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Meena Mahajan
    • 1
  • B. V. Raghavendra Rao
    • 1
  1. 1.The Institute of Mathematical Sciences ChennaiIndia

Personalised recommendations