Advertisement

Computing Sharp 2-Factors in Claw-Free Graphs

  • Hajo Broersma
  • Daniël Paulusma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5162)

Abstract

In a recently submitted paper we obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight. In this paper we extend these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least four whose number of components meets this bound. As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is polynomially solvable for a subclass of claw-free graphs. As another byproduct we give a short constructive proof for a result of Ryjáček, Saito & Schelp.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broersma, H.J., Paulusma, D., Yoshimoto, K.: Sharp upper bounds for the minimum number of components of 2-factors in claw-free graphs (submitted), http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/claw.pdf
  2. 2.
    Broersma, H.J., Trommel, H.: Closure concepts for claw-free graphs. Discrete Math. 185, 231–238 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Choudum, S.A., Paulraj, M.S.: Regular factors in K 1,3-free graphs. J. Graph Theory 15, 259–265 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2000)Google Scholar
  5. 5.
    Egawa, Y., Ota, K.: Regular factors in K 1,n-free graphs. J. Graph Theory 15, 337–344 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Faudree, R.J., Favaron, O., Flandrin, E., Li, H., Liu, Z.: On 2-factors in claw-free graphs. Discrete Math. 206, 131–137 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs—a survey. Disc. Math. 164, 87–147 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fronček, D., Ryjáček, Z., Skupień, Z.: On traceability and 2-factors in claw-free graphs. Discussiones Mathematicae Graph Theory 24, 55–71 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Co, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Gould, R., Hynds, E.: A note on cycles in 2-factors of line graphs. Bull. of ICA. 26, 46–48 (1999)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gould, R.J., Jacobson, M.S.: Two-factors with few cycles in claw-free graphs. Discrete Math. 231, 191–197 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Harary, F.: Graph Theory. Addison-Wesley, Reading MA (1969)Google Scholar
  13. 13.
    Jackson, B., Yoshimoto, K.: Even subgraphs of bridgeless graphs and 2-factors of line graphs. Discrete Math. 307, 2775–2785 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lovasz, L., Plummer, M.D.: Matching Theory, North-Holland Mathematics Studies 121. North-Holland, AmsterdamGoogle Scholar
  15. 15.
    Matthews, M.M., Sumner, D.P.: Hamiltonian results in K 1, 3-free graphs. J. Graph Theory 8, 139–146 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Plummer, M.D.: Graph factors and factorization: 1985-2003: A survey. Discrete Math. 307, 791–821 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Roussopoulos, N.D.: A max{m,n} algorithm for determining the graph H from its line graph G. Information Processing Letters 2, 108–112 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ryjacek, Z.: On a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70, 217–224 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ryjacek, Z., Saito, A., Schelp, R.H.: Closure, 2-factor, and cycle coverings in claw-free graphs. J. Graph Theory 32, 109–117 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Yoshimoto, K.: On the number of components in a 2-factor of a claw-free graph. Discrete Math. 307, 2808–2819 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hajo Broersma
    • 1
  • Daniël Paulusma
    • 1
  1. 1.Department of Computer ScienceDurham UniversityDurhamUnited Kingdom

Personalised recommendations