Communication in Random Geometric Radio Networks with Positively Correlated Random Faults

  • Evangelos Kranakis
  • Michel Paquette
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5198)

Abstract

We study the feasibility and time of communication in random geometric radio networks, where nodes fail randomly with positive correlation. We consider a set of radio stations with the same communication range, distributed in a random uniform way on a unit square region. In order to capture fault dependencies, we introduce the ranged spot model in which damaging events, called spots, occur randomly and independently on the region, causing faults in all nodes located within distance s from them. Node faults within distance 2s become dependent in this model and are positively correlated. We investigate the impact of the spot arrival rate on the feasibility and the time of communication in the fault-free part of the network. We provide an algorithm which broadcasts correctly with probability 1 − ε in faulty random geometric radio networks of diameter D in time O(D + log1/ε).

Keywords

Fault-tolerance dependent faults broadcast crash faults random geometric radio network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bienstock, D.: Broadcasting with random faults. Discr. Appl. Math. 20, 1–7 (1988)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chlebus, B.S., Diks, K., Pelc, A.: Sparse networks supporting efficient reliable broadcasting. Nordic Journal of Computing 1, 332–345 (1994)MATHMathSciNetGoogle Scholar
  3. 3.
    Chlebus, B.S., Diks, K., Pelc, A.: Reliable broadcasting in hypercubes with random link and node failures. Comb. Prob. and Computing 5, 337–350 (1996)MATHMathSciNetGoogle Scholar
  4. 4.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant broadcasting on wireless networks. J. Par. Distrib. Comp. 64, 89–96 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. Journal of Discrete Algorithms 5, 187–201 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ganesan, D., Govindan, R., Shenker, S., Estrin, D.: Highly-resilient, energy-efficient multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review 5(4), 11–25 (2001)CrossRefGoogle Scholar
  7. 7.
    Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks, ch. 5, pp. 153–181. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  8. 8.
    Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks. Journal of Algorithms 39, 47–67 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kranakis, E., Krizanc, D., Urrutia, J.: Coverage and connectivity in networks with directional sensors. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 917–924. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Kranakis, E., Paquette, M., Pelc, A.: Communication in networks with random dependent faults. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 418–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Paquette, M., Pelc, A.: Fast broadcasting with byzantine faults. International Journal of Foundations of Computer Science 17(6), 1423–1439 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pelc, A.: Fault-tolerant broadcasting and gossiping in communication networks. Networks 28(6), 143–156 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Penrose, M.D.: On k-connectivity for a geometric random graph. Random Struct. Alg. 15, 145–164 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Shakkottai, S., Srikant, R., Shroff, N.: Unreliable sensor grids: Coverage, connectivity and diameter. In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1073–1083 (2003)Google Scholar
  15. 15.
    Thottan, M., Ji, C.: Using network fault predictions to enable IP traffic management. J. Network Syst. Manage 9(3), 327–346 (2001)CrossRefGoogle Scholar
  16. 16.
    Yajnik, M., Kurose, J., Towsley, D.: Packet loss correlation in the MBone multicast network. In: Proceedings of IEEE Global Internet, pp. 94–99 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Michel Paquette
    • 1
  • Andrzej Pelc
    • 2
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Département d’informatique et d’ingénierieUniversité du Québec en Outaouais GatineauCanada

Personalised recommendations