Query Dissemination with Predictable Reachability and Energy Usage in Sensor Networks

  • Zinaida Benenson
  • Markus Bestehorn
  • Erik Buchmann
  • Felix C. Freiling
  • Marek Jawurek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5198)


Energy-efficient query dissemination plays an important role for the lifetime of sensor networks. In this work, we consider probabilistic flooding for query dissemination and develop an analytical framework which enables the base station to predict the energy consumed and the nodes reached according to the rebroadcast probability. Furthermore, we devise a topology discovery protocol that collects the structural information required for the framework. Our analysis shows that the energy savings exceed the energy spent to obtain the required information after a small number of query disseminations in realistic settings. We verified our results both with simulations and experiments using the SUN Spot nodes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Intel berkeley research lab data,
  2. 2.
    SUN Microsystems Inc., Small Programmable Object Technology (SPOT)Google Scholar
  3. 3.
    Xbow technology inc. wireless sensor networksGoogle Scholar
  4. 4.
    Chang, E.J.H.: Echo algorithms: Depth parallel operations on general graphs. IEEE Transactions on Software Engineering 8(4), 391–401 (1982)CrossRefGoogle Scholar
  5. 5.
    Eugster, P.T., Guerraoui, R., Kermarrec, A.-M., Massoulieacute, L.: Epidemic information dissemination in distributed systems. Computer 37(5), 60–67 (2004)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness (1990)Google Scholar
  7. 7.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System architecture directions for networked sensors. In: Proc. 9th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (2000)Google Scholar
  8. 8.
    Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. (2003)Google Scholar
  9. 9.
    Kellner, S., Pink, M., Meier, D., Blaß, E.-O.: Towards a realistic energy model for wireless sensor networks. In: WONS 2008 (to appear) (January 2008)Google Scholar
  10. 10.
    Lim, H., Kim, C.: Multicast tree construction and flooding in wireless ad hoc networks. In: MSWIM 2000: Proceedings of the 3rd ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems (2000)Google Scholar
  11. 11.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks. In: SIGOPS (2002)Google Scholar
  12. 12.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. In: ACM TODS (2005)Google Scholar
  13. 13.
    Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., Sheu, J.-P.: The broadcast storm problem in a mobile ad hoc network. In: MobiCom 1999: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking (1999)Google Scholar
  14. 14.
    Obraczka, K., Viswanath, K., Tsudik, G.: Flooding for reliable multicast in multi-hop ad hoc networks (2001)Google Scholar
  15. 15.
    Peng, W., Lu, X.-C.: On the reduction of broadcast redundancy in mobile ad hoc networks. In: MobiHoc 2000: Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing (2000)Google Scholar
  16. 16.
    Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying for flooding broadcast messages in mobile wireless networks. In: HICSS 2002: Proceedings of the 35th Annual Hawaii International Conference on System Sciences (HICSS 2002), vol. 9 (2002)Google Scholar
  17. 17.
    Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc networks. In: Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC) (2002)Google Scholar
  18. 18.
    Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor networks. In: SIGMOD Rec. (2002)Google Scholar
  19. 19.
    Yao, Y., Gehrke, J.: Query processing in sensor networks. 2003. In: CIDR 2003: Proceedings of the First Biennial Conference on Innovative Data Systems Research (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zinaida Benenson
    • 1
  • Markus Bestehorn
    • 2
  • Erik Buchmann
    • 2
  • Felix C. Freiling
    • 1
  • Marek Jawurek
    • 3
  1. 1.University of MannheimGermany
  2. 2.University of KarlsruheGermany
  3. 3.Fraunhofer IESEGermany

Personalised recommendations