Advertisement

Parallel Optimization of a Reversible (Quantum) Ripple-Carry Adder

  • Michael Kirkedal Thomsen
  • Holger Bock Axelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5204)

Abstract

The design of fast arithmetic logic circuits is an important research topic for reversible and quantum computing. A special challenge in this setting is the computation of standard arithmetical functions without the generation of garbage. The CDKM-adder is a recent garbage-less reversible (quantum) ripple-carry adder. We optimize this design with a novel parallelization scheme wherein m parallel k-bit CDKM-adders are combined to form a reversible mk-bit ripple-block carry adder with logic depth \(\mathcal{O}(m+k)\) for a minimal logic depth \(\mathcal{O}(\sqrt{mk})\), thus improving on the mk-bit CDKM-adder logic depth \(\mathcal{O}(m\cdot k)\). We also show designs for garbage-less reversible set-less-than circuits. We compare the circuit costs of the CDKM and parallel adder in measures of circuit delay, width, gate and transistor count, and find that the parallelized adder offers significant speedups at realistic word sizes with modest parallelization overhead.

Keywords

Reversible computing circuits adders quantum computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bennett, H.C.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)zbMATHGoogle Scholar
  3. 3.
    Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. In: 8th Workshop on Quantum Information Processing (2005) arXiv:quant-ph, 0410184v1Google Scholar
  4. 4.
    De Vos, A.: Reversible computing. Progress in Quantum Electronics 23(1), 1–49 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Desoete, B., De Vos, A.: A reversible carry-look-ahead adder using control gates. Integration, the VLSI Journal 33(1-2), 89–104 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Feynman, R.: Quantum mechanical computers. Optics News 11, 11–20 (1985)CrossRefGoogle Scholar
  7. 7.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research Development 5(3), 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal NCT three-qubit reversible circuits. IET Computers & Digital Techniques 1(2), 98–104 (2007)CrossRefGoogle Scholar
  10. 10.
    Moore, G.: Transcript of interview, Intel Developer Forum. Technical report, Intel Corp. (2007)Google Scholar
  11. 11.
    Munakata, T.: Beyond silicon: New computing paradigms. Communications of the ACM 50(9), 30–72 (2007) (special issue)CrossRefGoogle Scholar
  12. 12.
    Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible Fourier transform chip (accepted for MIXDES) (2008)Google Scholar
  13. 13.
    Thomsen, M.K., Glück, R.: Optimized reversible binary-coded decimal adders. Journal of Systems Architecture (to appear, 2008)Google Scholar
  14. 14.
    Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)Google Scholar
  15. 15.
    Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. International Journal of Unconventional Computing 1(4), 339–355 (2005)Google Scholar
  16. 16.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Physical Review A 54(1), 147–153 (1996)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Vitányi, P.: Time, space, and energy in reversible computing. In: Conference on Computing Frontiers. Proceedings, pp. 435–444. ACM Press, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Conference on Computing Frontiers. Proceedings, pp. 43–54. ACM Press, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Partial Evaluation and Program Manipulation. Proceedings, pp. 144–153. ACM Press, New York (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Kirkedal Thomsen
    • 1
  • Holger Bock Axelsen
    • 1
  1. 1.DIKU, Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations