Dynamic Source Selection in Large Scale Mediation Systems

  • Alexandra Pomares
  • Claudia Roncancio
  • José Abásolo
  • Pilar Villamil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5187)

Abstract

This paper proposes ORS, an original strategy to reduce the number of data sources to access during query evaluation in large scale mediation systems. ORS proceeds first selecting sources using extensional (data) information to discard useless sources and then validates the intentional (schema) information that each one is able to provide. The first step is based on location queries on some ”well chosen” data sources, that previously had made a consolidation integration effort. This paper proposes ORS to improve querying semantic virtual objects whose instances are distributed across numerous data sources. Cost analysis and implementation in a grid context are also presented.

Keywords

Large Scale Data Mediation Source Selection Distributed Source Selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. Int. J. High Perform. Comput. Appl. 15, 200–222 (2001)CrossRefGoogle Scholar
  2. 2.
    Roth, M., Schwarz, P.: A wrapper architecture for legacy data sources. In: Proc. vldb conference (1997)Google Scholar
  3. 3.
    Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data sources with DISCO. Knowledge and Data Engineering 10, 808–823 (1998)CrossRefGoogle Scholar
  4. 4.
    Kossmann, D.: The state of the art in distributed query processing. ACM Comput. Surv. 32, 422–469 (2000)CrossRefGoogle Scholar
  5. 5.
    Melnik, S., et al.: A mediation infrastructure for digital library services. In: DL 2000: Fifth ACM conference on Digital libraries, pp. 123–132. ACM Press, New York (2000)CrossRefGoogle Scholar
  6. 6.
    Bruno, G., Collet, C., Vargas-Solar, G.: Configuring intelligent mediators using ontologies. In: EDBT Workshops, pp. 554–572 (2006)Google Scholar
  7. 7.
    Bleiholder, J., et al.: Query planning in the presence of overlapping sources. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 811–828. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Yu, B., et al.: Effective keyword-based selection of relational databases. In: SIGMOD 2007, pp. 139–150. ACM, New York (2007)CrossRefGoogle Scholar
  9. 9.
    Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25, 38–49 (1992)CrossRefGoogle Scholar
  10. 10.
    Garcia-Molina, H., et al.: The tsimmis approach to mediation: Data models and languages. Journal of Intelligent Information Systems 8, 117–132 (1997)CrossRefGoogle Scholar
  11. 11.
    Stevens, R., et al.: Tambis: Transparent access to multiple bioinformatics information sources. Bioinformatics 16, 184–186 (2000)CrossRefGoogle Scholar
  12. 12.
    Doan, A., et al.: Reconciling schemas of disparate data sources: a machine-learning approach. In: SIGMOD 2001, pp. 509–520. ACM Press, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Gounaris, A., et al.: A service-oriented system to support data integration on data grids. In: CCGRID 2007, pp. 627–635. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  14. 14.
    Wang, Q., Chen, J., Gao, X., Zhou, W., Yan, B.: A new architecture of data access middleware under grid environment. apscc 0, 384–391 (2006)Google Scholar
  15. 15.
    Liu, J., Wu, Y., Zheng, W.: Grid enabled data integration framework for bioinformatics research. In: GCC Workshops, pp. 401–406 (2006)Google Scholar
  16. 16.
    Wöhrer, A., Brezany, P., Tjoa, A.M.: Novel mediator architectures for grid information systems. Future Gener. Comput. Syst. 21, 107–114 (2005)CrossRefGoogle Scholar
  17. 17.
    Wenlong, H., et al.: Data model and virtual database engine for grid environment. In: GCC 2007, pp. 823–829. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  18. 18.
    Apers, P.M.G., Hevner, A.R., Yao, S.B.: Optimization algorithms for distributed queries, 262–273 (1986)Google Scholar
  19. 19.
    Haraty, R.A., Fany, R.C.: Query acceleration in distributed database systems. Revista Comlombiana de Computación 2, 19–34 (2001)Google Scholar
  20. 20.
    Levy, A.Y., et al.: Querying heterogeneous information sources using source descriptions. In: VLDB, Bombay, India, VLDB Endowment, pp. 251–262 (1996)Google Scholar
  21. 21.
    Duschka, O.M., Genesereth, M.R.: Query planning in infomaster. In: Selected Areas in Cryptography, pp. 109–111 (1997)Google Scholar
  22. 22.
    Nie, T., et al.: Sla-based data integration on database grids. In: COMPSAC (2), pp. 613–618 (2007)Google Scholar
  23. 23.
    Liu, C., Chen, H.: A hash partition strategy for distributed query processing. In: Extending Database Technology, pp. 373–387 (1996)Google Scholar
  24. 24.
    Gounaris, A., et al.: A novel approach to resource scheduling for parallel query processing on computational grids. Distrib. Parallel Databases 19, 87–106 (2006)CrossRefGoogle Scholar
  25. 25.
    Eric Prud’hommeaux, A.S.: Sparql query language for rdf (2007), http://www.w3.org/tr/rdf-sparql-query/
  26. 26.
    Verdier, C.: Health information systems: from local to pervasive medical data. Santé et Systémique 9, 87–108 (2006)Google Scholar
  27. 27.
    Berlin, F.U.: The d2rq plattform (2007), http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/
  28. 28.
    d’Orazio, L., et al.: Distributed semantic caching in grid middleware. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 162–171. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandra Pomares
    • 1
  • Claudia Roncancio
    • 1
  • José Abásolo
    • 1
  • Pilar Villamil
    • 1
  1. 1.Universidad de los Andes, Bogotá, Colombia, INP Grenoble / LIG LaboratoryFrance

Personalised recommendations