Advertisement

Adaptive One-Way Functions and Applications

  • Omkant Pandey
  • Rafael Pass
  • Vinod Vaikuntanathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5157)

Abstract

We introduce new and general complexity theoretic hardness assumptions. These assumptions abstract out concrete properties of a random oracle and are significantly stronger than traditional cryptographic hardness assumptions; however, assuming their validity we can resolve a number of long-standing open problems in cryptography.

Keywords

Cryptographic Assumptions Non-malleable Commitment Non-malleable Zero-knowledge 

References

  1. 1.
    Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: FOCS, pp. 345–355 (2002)Google Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: FOCS, pp. 374–383 (1997)Google Scholar
  4. 4.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The power of rsa inversion oracles and the security of chaum’s rsa-based blind signature scheme. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Neven, G.: Transitive signatures based on factoring and rsa. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Palacio, A.: Gq and schnorr identification schemes: Proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: First ACM Conference on Computer and Communications Security, Fairfax, pp. 62–73. ACM, New York (1993)CrossRefGoogle Scholar
  8. 8.
    Blum, M.: How to prove a theorem so no one can claim it. In: Proc. of The International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  9. 9.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: FOCS, pp. 112–117 (1982)Google Scholar
  10. 10.
    Boldyreva, A., Fischlin, M.: On the security of oaep. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: STOC, pp. 416–426 (1990)Google Scholar
  19. 19.
    Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge (2001), http://www.wisdom.weizmann.ac.il/~oded/frag.html MATHGoogle Scholar
  20. 20.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In: FOCS, p. 102–152 (2003)Google Scholar
  22. 22.
    Katz, J., Wee, H.: Black-box lower bounds for non-malleable protocols (2007)Google Scholar
  23. 23.
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Naor, M.: Bit commitment using pseudorandomness. J. of Cryptology 4 (1991)Google Scholar
  26. 26.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990: Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 427–437. ACM Press, New York (1990)CrossRefGoogle Scholar
  27. 27.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)Google Scholar
  28. 28.
    Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: FOCS, pp. 563–572 (2005)Google Scholar
  29. 29.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: STOC, pp. 533–542 (2005)Google Scholar
  30. 30.
    Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols revisited. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 86–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: STOC, pp. 242–251 (2004)Google Scholar
  32. 32.
    Rackoff, C., Simon, D.R.: Cryptographic defense against traffic analysis. In: STOC 1993: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 672–681. ACM Press, New York (1993)CrossRefGoogle Scholar
  33. 33.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Omkant Pandey
    • 1
  • Rafael Pass
    • 2
  • Vinod Vaikuntanathan
    • 3
  1. 1.UCLA 
  2. 2.Cornell University 
  3. 3.MIT 

Personalised recommendations