Programmable Hash Functions and Their Applications

  • Dennis Hofheinz
  • Eike Kiltz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5157)

Abstract

We introduce a new information-theoretic primitive called programmable hash functions (PHFs). PHFs can be used to program the output of a hash function such that it contains solved or unsolved discrete logarithm instances with a certain probability. This is a technique originally used for security proofs in the random oracle model. We give a variety of standard model realizations of PHFs (with different parameters).

The programmability of PHFs make them a suitable tool to obtain black-box proofs of cryptographic protocols when considering adaptive attacks. We propose generic digital signature schemes from the strong RSA problem and from some hardness assumption on bilinear maps that can be instantiated with any PHF. Our schemes offer various improvements over known constructions. In particular, for a reasonable choice of parameters, we obtain short standard model digital signatures over bilinear maps.

References

  1. 1.
    Bari, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography: The case of hashing and signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 216–233. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, November 3–5, 1993, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. Journal of Cryptology 21(2), 149–177 (2008)MATHCrossRefGoogle Scholar
  8. 8.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. Journal of Cryptology 17(4), 297–319 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Boyen, X.: General ad hoc encryption from exponent inversion IBE. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 394–411. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Brands, S.: An efficient off-line electronic cash system based on the representation problem. Report CS-R9323, Centrum voor Wiskunde en Informatica (March 1993)Google Scholar
  12. 12.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)Google Scholar
  14. 14.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: ACM CCS 1999, Kent Ridge Digital Labs, Singapore, November 1–4, 1999, pp. 46–51. ACM Press, New York (1999)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  22. 22.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS 2000, Okinawa, Japan (January 2000)Google Scholar
  25. 25.
    Waters, B.R.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Zhu, H.: New digital signature scheme attaining immunity to adaptive chosen-message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dennis Hofheinz
    • 1
  • Eike Kiltz
    • 1
  1. 1.Cryptology and Information Security Research Theme, CWIAmsterdamThe Netherlands

Personalised recommendations