Advertisement

Dynamic Threshold Public-Key Encryption

  • Cécile Delerablée
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5157)

Abstract

This paper deals with threshold public-key encryption which allows a pool of players to decrypt a ciphertext if a given threshold of authorized players cooperate. We generalize this primitive to the dynamic setting, where any user can dynamically join the system, as a possible recipient; the sender can dynamically choose the authorized set of recipients, for each ciphertext; and the sender can dynamically set the threshold t for decryption capability among the authorized set. We first give a formal security model, which includes strong robustness notions, and then we propose a candidate achieving all the above dynamic properties, that is semantically secure in the standard model, under a new non-interactive assumption, that fits into the general Diffie-Hellman exponent framework on groups with a bilinear map. It furthermore compares favorably with previous proposals, a.k.a. threshold broadcast encryption, since this is the first threshold public-key encryption, with dynamic authorized set of recipients and dynamic threshold that provides constant-size ciphertexts.

Keywords

Random Oracle Random Oracle Model Broadcast Encryption Choose Ciphertext Attack Partial Decryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Chai, Z., Cao, Z., Zhou, Y.: Efficient id-based broadcast threshold decryption in ad hoc network. In: IMSCCS (2), pp. 148–154. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  11. 11.
    Daza, V., Herranz, J., Morillo, P., Ràfols, C.: CCA2-secure threshold broadcast encryption with shorter ciphertexts. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 35–50. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: 26th ACM STOC, pp. 522–533. ACM Press, New York (1994)Google Scholar
  13. 13.
    Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  18. 18.
    Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56–61. Springer, Heidelberg (1990)Google Scholar
  19. 19.
    Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic and ad-hoc groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 88–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Dynamic threshold cryptosystems: A new scheme in group oriented cryptography. In: PRAGOCRYPT 1996, pp. 370–379 (1996)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98. ACM Press, New York (2006)CrossRefGoogle Scholar
  24. 24.
    Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Joux, A.: A one-round protocol for tripartite diffie-hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Libert, B., Quisquater, J.-J.: Efficient revocation and threshold pairing based cryptosystems. In: 22nd ACM PODC, pp. 163–171. ACM Press, New York (2003)Google Scholar
  27. 27.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  28. 28.
    Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)Google Scholar
  29. 29.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC. ACM Press, New York (1990)Google Scholar
  30. 30.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  31. 31.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  32. 32.
    Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  33. 33.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar
  34. 34.
    Shoup, V.: ISO 18033-2: An emerging standard for public-key encryption, Final Committee Draft (December 2004)Google Scholar
  35. 35.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Cécile Delerablée
    • 1
    • 2
  • David Pointcheval
    • 2
  1. 1.Orange Labs 
  2. 2.ENS-CNRS-INRIA 

Personalised recommendations