Shock Waves pp 601-606 | Cite as

Experimental and numerical investigation of jet injection in a wall bounded supersonic flow

  • J. Ratan
  • G. Jagadeesh
Conference paper


Numerical and experimental studies of a supersonic jet supersonic jet (Helium) inclined at 45$^°$ to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be ≈ 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.


Mach Number AIAA Journal Shock Tunnel Pressure Sensitive Paint Pitot Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Dhinagaran and T. K. Bose: AIAA Journal 36, 3 (1998)CrossRefGoogle Scholar
  2. 2.
    Rizzetta D. P.: AIAA Journal 30, 10 (1992)CrossRefGoogle Scholar
  3. 3.
    F. Grasso and V. Magi: AIAA Journal 33, 1 (1995)CrossRefGoogle Scholar
  4. 4.
    P. Gerlinger, J. Algermissen and D. Bruggemann: AIAA Journal 34, 1 (1996)CrossRefGoogle Scholar
  5. 5.
    Spaid F. W. and Zukoski E. E.: AIAA Journal 6, 2 (1968)CrossRefGoogle Scholar
  6. 6.
    Aso S., Okuyama S, Kawai M., Ando Y.: AIAA Paper 93, 0489 (1993)Google Scholar
  7. 7.
    Gruber M. R., Nejad A. S., Chen T. H., Dutton J. C.: Journal of Propulsion and Power 11, 2 (1995)CrossRefGoogle Scholar
  8. 8.
    Santiago J. G., Dutton J. C.: AIAA Journal 35, 5 (1997)CrossRefGoogle Scholar
  9. 9.
    Everett D. E., Woodmansee M. A., Dutton J. C., Morris M. J.: Journal of Propulsion and Power 14, 6 (1998)CrossRefGoogle Scholar
  10. 10.
    A. Ben-Yakar, M. G. Mungal and R. K. Hanson: Physics of Fluids 18, 026101 (2006)CrossRefGoogle Scholar
  11. 11.
    P. L. Roe: Journal of Computational Physics 43, (1981)Google Scholar
  12. 12.
    B. Van Leer: Journal of Computational Physics 32, (1979)Google Scholar
  13. 13.
    G. D. Van Albada, B. Van Leer, and W. W. Roberts: Astron. Astrophys. 108, (1982)Google Scholar
  14. 14.
    Peyret R. and Taylor T. D.: In: Computational Methods for Fluid Flow, (Springer, Berlin, 1983) pp pagesGoogle Scholar
  15. 15.
    K. G. Powell and B. Van Leer: Tailoring explicit time marching schemes to improve convergence characteristics, (Von Karman Institute Lecture series 90-03, 1990)Google Scholar
  16. 16.
    R. Joarder and G. Jagadeesh: Shock Waves 13, 5, (2003)CrossRefGoogle Scholar
  17. 17.
    Niranjan Sahoo: Simultaneous measurement of aerodynamic forces and convective surface heat transfer rates for large angle blunt cones in hypersonic shock tunnel. PhD thesis, Department of Aerospace Engineering, Indian Institute of Science, Bangalore (2003)Google Scholar
  18. 18.
    K. Satheesh, G. Jagadeesh and K. P. J. Reddy: Current Science 92, 1, (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Ratan
    • 1
  • G. Jagadeesh
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangalore-560012India

Personalised recommendations