Advertisement

Shock Waves pp 409-414 | Cite as

A diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube

  • H. Li
  • A. Farooq
  • R.D. Cook
  • D.F. Davidson
  • J.B. Jeffries
  • R.K. Hanson

Summary

Time-resolved measurements of gas temperature and water vapor concentration are made in a shock tube using a novel diode laser absorption sensor (100 kHz bandwidth). Gas temperature is determined from the ratio of fixed-wavelength laser absorption of two water vapor rovibrational transitions near 1.4 μ m, and H2O concentration is determined from the inferred temperature and the absorption for one of the transitions. Wavelength modulation spectroscopy is employed with second-harmonic detection to improve the sensor sensitivity. The sensor is validated in a static cell and shock tests with H$_2$O-Ar mixtures, yielding an overall accuracy of better than 1.9 % for temperature and 1.4 % for H2O concentration measurements over the range of 500-1700 K. The sensor is then demonstrated in a preliminary study of combustion in H2/O2/Ar and heptane/O2/Ar mixtures in the shock tube.

Keywords

Shock Tube Homogenous Charge Compression Ignition Shock Test Wavelength Modulation Spectroscopy Sensor Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glassman I.: Combustion, 3rd edition (Academic Press, San Diego, CA 1996Google Scholar
  2. 2.
    Bates R.W., Golden D.M., Hanson R.K., Bowman C.T.: Phys. Chem. Chem. Phys., 3:2337-2342, 2001.CrossRefGoogle Scholar
  3. 3.
    Li H., Rieker G.B., Liu X., Jeffries J.B., Hanson R.K.: Appl. Opt., 45(2):1052-1061, 2006.CrossRefGoogle Scholar
  4. 4.
    Li H., Farooq A., Jeffries J.B., Hanson R.K.: In preparation.Google Scholar
  5. 5.
    Li H., Farooq A., Jeffries J.B., Hanson R.K.: submitted to J. Quant. Spectrosc. Radiat. Transfer.Google Scholar
  6. 6.
    Conaire M.O., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K.: Int. J. Chem. Kinet., 36:603-622, 2004.CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Li H., Owens Z., Davidson D.F., Hanson R.K.: In preparation.Google Scholar
  9. 9.
    Seiser H., Pitsch H., Seshadri K., Pitz W. J., Curran H. J.: Proc. Combust. Inst. 28:2029-2037, 2000.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Li
    • 1
  • A. Farooq
    • 1
  • R.D. Cook
    • 1
  • D.F. Davidson
    • 1
  • J.B. Jeffries
    • 1
  • R.K. Hanson
    • 1
  1. 1.High Temperature Gasdynamics Laboratory, Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations