Shock Waves pp 299-304 | Cite as

Implicit-explicit Runge-Kutta methods for stiff combustion problems

  • E. Lindblad
  • D.M. Valiev
  • B. Müller
  • J. Rantakokko
  • P. Lütstedt
  • M.A. Liberman

Summary

New high order implicit-explicit Runge-Kutta methods have been developed and implemented into a finite volume code to solve the Navier-Stokes equations for reacting gas mixtures. If only the stiff chemistry is treated implicitly, the linear systems in each Newton iteration are simple and solved directly. Numerical simulations of deflagration-to-detonation transition (DDT) show the potential of the new time integration for computational combustion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liberman M. A., Kagan L., Sivashinsky G., Valiev D., Flame acceleration due to preheating within the flame fold and hydraulic resistance as a mechanism of Deflagration-to-Detonation Transition, 21st International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS-2007), Poitiers (2007).Google Scholar
  2. 2.
    Liberman M. A., Sivashinsky G., Valiev D., Eriksson L.-E., Numerical simulation of deflagration-to-detonation transition: Role of hydrodynamic flame instability, Int J. Transport Phenomena, 8, 253 - 277 (2006).Google Scholar
  3. 3.
    Kagan L., Valiev D., Liberman M., Sivashinsky G., Effects of hydraulic resistance and heat losses on the deflagration-to detonation transition, Proceedings of Pulsed and Continuous Detonations, Eds. G. Roy, S. Frolov, J. Sinibaldy, Torus Press LTd. 119-123 (2006).Google Scholar
  4. 4.
    Eriksson, L.-E., Development and validation of highly modular flow solver versions in G2DFLOW and G3DFLOW series for compressible viscous reacting flow, Tech. Report, 9970-1162, Volvo Aero Corporation, Trollhättan, Sweden, 1995.Google Scholar
  5. 5.
    Lindblad E., Valiev D.M., Müller B., Rantakokko J., Lötstedt P., Liberman M.A., Implicit-explicit Runge-Kutta method for combustion simulation, ECCOMAS CFD Conference 2006, TU Delft, The Netherlands, 5-8 September 2006, 20 pages (2006).Google Scholar
  6. 6.
    Andersson, N., Eriksson, L.-E. and Davidson, L., Large-Eddy Simulation of subsonic turbulent jets and their radiated sound. AIAA Journal, 43(9), 1899–1912, (2005).CrossRefGoogle Scholar
  7. 7.
    Lindblad, E., High order semi-implicit Runge-Kutta methods for separable stiff problems, Master’s Thesis, Uppsala University, Sweden, Dec. 2004.Google Scholar
  8. 8.
    Bussing, T.R.A. and Murman, E.M., Finite-volume methods for the calculation of compressible chemically reactive flows. AIAA J., 26 (9), 1070–1078, (1988).MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eriksson, L.-E., Time-marching Euler and Navier-Stokes solution for nozzle flows with finite rate chemistry. Tech. Report, 9370-794, Volvo Flygmotor AB, Trollhättan, Sweden, 1993.Google Scholar
  10. 10.
    Ascher, U.M., Ruuth, S.J. and Spiteri, R.J., Implict-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151–167, (1997).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Pareschi, L. and Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Scientific Comp., 25 (1/2), 129–155, (2005).MathSciNetGoogle Scholar
  12. 12.
    Yoh, J.J. and Zhong, X., New hybrid Runge-Kutta methods for unsteady reactive flow simulation, AIAA J., 42 (8), 1593–1600, (2004).CrossRefGoogle Scholar
  13. 13.
    Yoh, J.J. and Zhong, X., New hybrid Runge-Kutta methods for unsteady reactive flow simulation: Applications, AIAA J., 42 (8), 1601–1611, (2004).CrossRefGoogle Scholar
  14. 14.
    Kennedy, C.A. and Carpenter, M.H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139–181, (2003).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gary, J., On certain finite difference schemes for hyperbolic systems, Math. Comp., 18, 1–18, (1964).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Lindblad
    • 1
  • D.M. Valiev
    • 2
  • B. Müller
    • 3
  • J. Rantakokko
    • 1
    • 4
  • P. Lütstedt
    • 1
  • M.A. Liberman
    • 5
  1. 1.Department of Information TechnologyUppsala University751 05 UppsalaSweden
  2. 2.Materials Science and Engineering, KTH100 44 StockholmSweden
  3. 3.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyNorway
  4. 4.UPPMAXUppsala University751 05 UppsalaSweden
  5. 5.Department of PhysicsUppsala University751 21 UppsalaSweden

Personalised recommendations