Shock Waves pp 751-755 | Cite as

Ignition of hydrocarbon–containing mixtures by nanosecond discharge: experiment and numerical modelling

  • I.N. Kosarev
  • S.V. Kindusheva
  • N.L. Aleksandrov
  • S.M. Starikovskaia
  • A.Y. Starikovskii
Conference paper

Summary

The efficiency of nonequilibrium plasma of pulsed discharge as an igniter of combustible mixtures at elevated temperatures was investigated via shock tube technique. Experiments were carried out behind a reflected shock wave. The experiments were carried out with a set of stoichiometric mixtures CnH2n+2:O2 (10%) diluted by Ar (90%) for hydrocarbons from CH4 to C5H12. The temperature behind the reflected shock wave varied from 950 to 2000~K, and the pressure was 0.2 to 2.0~atm. Numerical modelling has been performed to compare the autoignition and ignition by a nanosecond discharge for CH4 – C5H12 containing mixtures. The results of the calculations demonstrate reasonable correlation with the experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lukhovitskii B I, Starik A M and Titova N S 2005 Combustion, Explosion, and Shock Waves 41 386—94CrossRefGoogle Scholar
  2. 2.
    Kossyi I A, Kostinsky A Yu, Matveyev A A and Silakov V P 1992 Plasma Sources Sci. Technol. 1 207—20CrossRefGoogle Scholar
  3. 3.
    Williams S, Popovic S, Vuskovic L, Carter C, Jacobson L, Kuo S, Bivolaru D, Corera S, Kahandawala M and Sidhu S 42nd AIAA Aerospace Sciences Meeting and Exhibit (Reno, Nevada, USA, 5–8 January 2004) AIAA—2004—1012Google Scholar
  4. 4.
    Campbell C S and Egolfopoulos F N 2005 Comb. Sci. Technol. 177 2275—98CrossRefGoogle Scholar
  5. 5.
    Chintala N, Bao A, Lou G and Adamovich I V 2006 Comb. and Flame 144 744—56.CrossRefGoogle Scholar
  6. 6.
    Bozhenkov S A, Starikovskaia S M, Starikovskii A Yu 2003 Comb. and Flame 133 133–146CrossRefGoogle Scholar
  7. 7.
    Kee R J, Miller J A and Jefferson T H, Report No. SAND 80-8003, Sandia National Laboratory, Livermore, CA (1980).Google Scholar
  8. 8.
    Tan Y, Dagaut P, Cathonnet M, Boetther J C 1994 Combust. Sci. Technol. 103 133.CrossRefGoogle Scholar
  9. 9.
    Konnov A, Detailed reaction mechanism for small hydrocarbons combustion, http://homepages. vub.ac.be/akonnov/
  10. 10.
    Zhukov V P, “Autoignition of Saturated Hydrocarbons at High Pressures and Initiation of Detonation by Nanosecond Discharge”, PhD Thesis, Moscow Institute of Physics and Technology (2004).Google Scholar
  11. 11.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • I.N. Kosarev
    • 1
  • S.V. Kindusheva
    • 1
  • N.L. Aleksandrov
    • 1
  • S.M. Starikovskaia
    • 1
  • A.Y. Starikovskii
    • 1
  1. 1.Physics of Nonequilibrium Systems LabMoscow Institute of Physics and Technology

Personalised recommendations