Generating Compact MTBDD-Representations from Probmela Specifications

  • Frank Ciesinski
  • Christel Baier
  • Marcus Größer
  • David Parker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5156)


The purpose of the paper is to provide an automatic transformation of parallel programs of an imperative probabilistic guarded command language (called Probmela) into probabilistic reactive module specifications. The latter serve as basis for the input language of the symbolic MTBDD-based probabilistic model checker PRISM, while Probmela is the modeling language of the model checker LiQuor which relies on an enumerative approach and supports partial order reduction and other reduction techniques. By providing the link between the model checkers PRISM and LiQuor, our translation supports comparative studies of different verification paradigms and can serve to use the (more comfortable) guarded command language for a MTBDD-based quantitative analysis. The challenges were (1) to ensure that the translation preserves the Markov decision process semantics, (2) the efficiency of the translation and (3) the compactness of the symbolic BDD-representation of the generated PRISM-language specifications.


Model Checker Modeling Language Markov Decision Process Binary Decision Diagram Atomic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design: An International Journal 15(1), 7–48 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Baier, C., Ciesinski, F., Größer, M.: Probmela: a modeling language for communicating probabilistic systems. In: Proceeding MEMOCODE (2004)Google Scholar
  3. 3.
    Baldamus, M., Schröder-Babo, J.: p2b: a translation utility for linking promela and symbolic model checking (tool paper). In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 183–191. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time analysis of reactive systems. In: Proc. QEST, pp. 131–132. IEEE CS Press, Los Alamitos (2007)Google Scholar
  5. 5.
    Ciesinski, F., Baier, C., Groesser, M., Klein, J.: Reduction techniques for model checking markov decision processes (submitted for publication, 2008)Google Scholar
  6. 6.
    Clarke, E., Fujita, M., McGeer, P., Yang, J., Zhao, X.: Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. In: International Workshop on Logic Synthesis, Tahoe City (1993)Google Scholar
  7. 7.
    Größer, M., Norman, G., Baier, C., Ciesinski, F., Kwiatkoswka, M., Parker, D.: On reduction criteria for probabilistic reward models. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 309–320. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hermanns, H., Kwiatkowska, M., Norman, G., Parker, D., Siegle, M.: On the use of MTBDDs for performability analysis and verification of stochastic systems. Journal of Logic and Algebraic Programming: Special Issue on Probabilistic Techniques for the Design and Analysis of Systems 56(1-2), 23–67 (2003)MATHMathSciNetGoogle Scholar
  9. 9.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Holzmann, G.J.: The Spin Model Checker, Primer and Reference Manual. Addison-Wesley, Reading (2003)Google Scholar
  11. 11.
    Minato, S.i., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed edges for efficient boolean function manipulation. In: DAC 1990: Proceedings of the 27th ACM/IEEE conference on Design automation, pp. 52–57. ACM Press, New York (1990)CrossRefGoogle Scholar
  12. 12.
    Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)Google Scholar
  13. 13.
    Lehmann, D., Rabin, M.O.: On the advantage of free choice: A symmetric and fully distributed solution to the Dining Philosophers problem (extended abstract). In: Proc. Eighth Ann. ACM Symp. on Principles of Programming Languages, pp. 133–138 (1981); A classic paper in the area of randomized distributed algorithms. They show there is no deterministic, deadlock-free, truly distributed and symmetric solution to the Dining Philosophers problem, and describe a simple probabilistic alternative. Google Scholar
  14. 14.
    Malik, S., Wang, A.R., Brayton, R.K.: Logic verification using binary decision diagrams in a logic synthesis environment. In: ICCAD 1988: Digest of technical papers, pp. 6–9. IEEE Press, Los Alamitos (1988)Google Scholar
  15. 15.
    McMillan, K.L.: The SMV system, symbolic model checking - an approach. Technical Report CMU-CS-92-131, Carnegie Mellon University (1992)Google Scholar
  16. 16.
    Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design: OBDD-Foundations and Applications. Springer, Heidelberg (1998)Google Scholar
  17. 17.
    Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. PhD thesis, University of Birmingham (2002)Google Scholar
  18. 18.
  19. 19.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York (1994)MATHGoogle Scholar
  20. 20.
    Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Algebraic Decision Diagrams and Their Applications. In: IEEE /ACM International Conference on CAD, Santa Clara, California, November 1993, pp. 188–191. ACM/IEEE, IEEE Computer Society Press (1993)Google Scholar
  21. 21.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)MATHMathSciNetGoogle Scholar
  22. 22.
    Beaudenon, V., Encrenaz, E., Taktak, S.: Data decision diagrams for promela systems analysis. In: Software Tools and Technology Transfert (accepted for publication, 2008)Google Scholar
  23. 23.
    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. In: Monographs on Discrete Mathematics and Applications. Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frank Ciesinski
    • 1
  • Christel Baier
    • 1
  • Marcus Größer
    • 1
  • David Parker
    • 2
  1. 1.Institute for Theoretical Computer ScienceTechnical University DresdenGermany
  2. 2.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations