Advertisement

Symbolic Computation Software Composability

  • Sebastian Freundt
  • Peter Horn
  • Alexander Konovalov
  • Steve Linton
  • Dan Roozemond
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5144)

Abstract

We present three examples of the composition of Computer Algebra Systems to illustrate the progress on a composability infrastructure as part of the SCIEnce (Symbolic Computation Infrastructure for Europe) project. One of the major results of the project so far is an OpenMath based protocol called SCSCP (Symbolic Computation Software Composability Protocol). SCSCP enables the various software packages for example to exchange mathematical objects, request calculations, and store and retrieve remote objects, either locally or accross the internet. The three examples show the current state of the GAP, KANT, and MuPAD software packages, and give a demonstration of exposing Macaulay using a newly developed framework.

Keywords

Mathematical Object Symbolic Computation Computer Algebra System Remote Object Symbolic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besche, H.U., Eick, B.: Construction of finite groups. J. Symbolic Comput. 27(4), 387–404 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Besche, H.U., Eick, B., O’Brien, E.: The Small Groups Library, http://www-public.tu-bs.de:8080/~beick/soft/small/small.html
  3. 3.
    The Centre for Interdisciplinary Research in Computational Algebra (St Andrews, Scotland), http://www-circa.mcs.st-and.ac.uk/
  4. 4.
    CNRS, École Polytechnique (Palaiseau, France), http://www.polytechnique.fr/
  5. 5.
    The Dependable Systems Research Group at Heriot-Watt University, Edinburgh, Scotland, http://www.macs.hw.ac.uk/~dsg/content/public/home/home.php
  6. 6.
    The Discrete Algebra and Geometry group at the Technical University of Eindhoven, Netherlands, http://www.win.tue.nl/dw/dam/
  7. 7.
    Gamble, G., Nickel, W., O’Brien, E.: ANUPQ — ANU p-Quotient, GAP4 package, http://www.math.rwth-aachen.de/~Greg.Gamble/ANUPQ/
  8. 8.
    The GAP Group: GAP — Groups, Algorithms, and Programming, http://www.gap-system.org
  9. 9.
    Von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  10. 10.
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
  11. 11.
  12. 12.
    MathBroker II: Brokering Distributed Mathematical Services, http://www.risc.uni-linz.ac.at/research/parallel/projects/mathbroker2/
  13. 13.
    Institute e-Austria Timisoara, Romania, http://www.ieat.ro/
  14. 14.
    The KANT group at the Technical University of Berlin, Germany, http://www.math.tu-berlin.de/~kant/
  15. 15.
    Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D.: Symbolic Computation Software Composability Protocol (SCSCP) Specification, Version 1.1. CIRCA (preprint, 2008), http://www.symbolic-computation.org/scscp/
  16. 16.
    Konovalov, A., Linton, S.: SCSCP — Symbolic Computation Software Composability Protocol. GAP 4 packageGoogle Scholar
  17. 17.
    Maplesoft, Inc, Waterloo, Canada, http://www.maplesoft.com/
  18. 18.
  19. 19.
  20. 20.
  21. 21.
    RISC-Linz, Austria, http://www.risc.uni-linz.ac.at/
  22. 22.
    SAGE: Open Source Mathematics Software, http://www.sagemath.org/
  23. 23.
    Roozemond, D.: OpenMath Content Dictionary: scscp1, http://www.win.tue.nl/SCIEnce/cds/scscp1.html
  24. 24.
    Roozemond, D.: OpenMath Content Dictionary: scscp2, http://www.win.tue.nl/SCIEnce/cds/scscp2.html
  25. 25.
    Symbolic Computation Infrastructure for Europe, http://www.symbolic-computation.org/
  26. 26.
    Research Group Computational Mathematics, Department of Mathematics, University of Kassel, Germany, http://www.mathematik.uni-kassel.de/compmath

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sebastian Freundt
    • 1
  • Peter Horn
    • 2
  • Alexander Konovalov
    • 3
  • Steve Linton
    • 3
  • Dan Roozemond
    • 4
  1. 1.Fakultät II - Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Fachbereich MathematikUniversität KasselKasselGermany
  3. 3.School of Computer ScienceUniversity of St AndrewsScotland
  4. 4.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenNetherlands

Personalised recommendations