Advertisement

High-Level Theories

  • Jacques Carette
  • William M. Farmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5144)

Abstract

We introduce high-level theories in analogy with high-level programming languages. The basic point is that even though one can define many theories via simple, low-level axiomatizations, that is neither an effective nor a comfortable way to work with such theories. We present an approach which is closer to what users of mathematics employ, while still being based on formal structures.

Keywords

Mathematical Knowledge Assembly Language Axiomatic Theory Algorithmic Theory Theory Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanqui, F., Jouannaud, J.-P., Strub, P.-Y.: Building decision procedures in the calculus of inductive constructions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 328–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Blanqui, F., Jouannaud, J.-P., Strub, P.-Y.: From formal proofs to mathematical proofs: A safe, incremental way for building in first-order decision procedures. In: TCS 2008: 5th IFIP International Conference on Theoretical Computer Science. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Buchberger, B.: Theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bulletin 39, 19–24 (1976)MathSciNetGoogle Scholar
  4. 4.
    Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic 4, 470–504 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carette, J.: Gaussian Elimination: a case study in efficient genericity with MetaOCaml. Science of Computer Programming 62(1), 3–24 (2004); Special Issue on the First MetaOCaml Workshop (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carette, J.: A canonical form for piecewise defined functions. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 77–84. ACM Press, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Carette, J., Farmer, W.M., Sorge, V.: A rational reconstruction of a system for experimental mathematics. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 13–26. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Carette, J., Kiselyov, O.: Multi-stage programming with Functors and Monads: eliminating abstraction overhead from generic code (accepted, 2008); Special issue for GPCE 2004 and 2005Google Scholar
  9. 9.
    Coq Development Team. The Coq Proof Assistant Reference Manual, Version 7.4 (2003), http://pauillac.inria.fr/coq/doc/main.html
  10. 10.
    Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76, 95–120 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    de Bruijn, N.G.: Automath, a language for mathematics. In: Siekmann, J., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on Computational Logic 1967-1970, pp. 159–200. Springer, Heidelberg (1983)Google Scholar
  13. 13.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press, London (2000)Google Scholar
  15. 15.
    Farmer, W.M.: Theory interpretation in simple type theory. In: Heering, J., et al. (eds.) HOA 1993. LNCS, vol. 816, pp. 96–123. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Farmer, W.M.: Biform theories in Chiron. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Farmer, W.M.: Chiron: A multi-paradigm logic. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in Logic, Grammar and Rhetoric, vol. 10(23), pp. 1–19, University of Białystok (2007)Google Scholar
  18. 18.
    Farmer, W.M.: Chiron: A set theory with types, undefinedness, quotation, and evaluation. SQRL Report No. 38, McMaster University (2007) (revised 2008)Google Scholar
  19. 19.
    Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992)Google Scholar
  20. 20.
    Farmer, W.M., von Mohrenschildt, M.: An overview of a formal framework for managing mathematics. Annals of Mathematics and Artificial Intelligence 38, 165–191 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Janicki, R., Parnas, D.L., Zucker, J.: Tabular representations in relational documents. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science, pp. 184–196. Springer, Heidelberg (1997)Google Scholar
  22. 22.
    Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem prover. In: Calculemus/MKM, pp. 94–105 (2007)Google Scholar
  23. 23.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)Google Scholar
  24. 24.
    McCasland, R.L., Bundy, A., Smith, P.F.: Ascertaining mathematical theorems. Electronic Notes in Theoretical Computer Science 151, 21–38 (2006)CrossRefGoogle Scholar
  25. 25.
    Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: Combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)Google Scholar
  26. 26.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)zbMATHGoogle Scholar
  27. 27.
    Prevosto, V.: Certified mathematical hierarchies: The FoCal system. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Dagstuhl Seminar Proceedings of Mathematics, Algorithms, Proofs, Dagstuhl, Germany. Internationales Begegnungs- und Forschungszentrum (IBFI), vol. 05021. Schloss Dagstuhl, Germany (2005)Google Scholar
  28. 28.
    Rudnicki, P.: An overview of the MIZAR project. Technical report, Department of Computing Science, University of Alberta (1992)Google Scholar
  29. 29.
    Xu, J.: Mei — A module system for mechanized mathematics systems. In: Programming Languages for Mechanized Mathematics Workshop, Hagenberg, Austria (2007)Google Scholar
  30. 30.
    Xu, J.: Mei — A Module System for Mechanized Mathematics Systems. PhD thesis, McMaster University (January 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jacques Carette
    • 1
  • William M. Farmer
    • 1
  1. 1.Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations