MetiTarski: An Automatic Prover for the Elementary Functions

  • Behzad Akbarpour
  • Lawrence C. Paulson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5144)

Abstract

Many inequalities involving the functions ln, exp, sin, cos, etc., can be proved automatically by MetiTarski: a resolution theorem prover (Metis) modified to call a decision procedure (QEPCAD) for the theory of real closed fields. The decision procedure simplifies clauses by deleting literals that are inconsistent with other algebraic facts, while deleting as redundant clauses that follow algebraically from other clauses. MetiTarski includes special code to simplify arithmetic expressions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarpour, B., Paulson, L.: Extending a resolution prover for inequalities on elementary functions. In: Logic for Programming, Artificial Intelligence, and Reasoning, pp. 47–61 (2007)Google Scholar
  2. 2.
    Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)Google Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. I, pp. 19–99. Elsevier Science, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Beeson, M.: Automatic generation of a proof of the irrationality of e. JSC 32(4), 333–349 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)MATHCrossRefGoogle Scholar
  7. 7.
    Bullen, P.S.: A Dictionary of Inequalities, Longman (1998)Google Scholar
  8. 8.
    Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica Journal 3(1), 56–71 (1993)Google Scholar
  9. 9.
    Daumas, M., Muñoz, C., Lester, D.: Verified real number calculations: A library for integer arithmetic, http://hal.archives-ouvertes.fr/hal-00168402/fr/
  10. 10.
    Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. Technical Report MIP-9720, Universität Passau, D-94030, Germany (1997)Google Scholar
  11. 11.
    Harrison, J.: Formalized mathematics. Technical Report 36, Turku Centre for Computer Science (TUCS), Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland (1996), http://www.cl.cam.ac.uk/jrh13/papers/form-math3.html
  12. 12.
    Hong, H.: QEPCAD — quantifier elimination by partial cylindrical algebraic decomposition. Sources and documentation are on the Internet, http://www.cs.usna.edu/qepcad/B/QEPCAD.html
  13. 13.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficient. Springer, Heidelberg (2006) (First published in 1983); cited by Mclaughlin and Harrison [17]Google Scholar
  14. 14.
    Hurd, J.: Metis first order prover (2007), http://gilith.com/software/metis/
  15. 15.
    Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 348–362. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. Journal of Automated Reasoning 18(2), 211–220 (1997)CrossRefGoogle Scholar
  17. 17.
    McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) FLoC 2006 Workshop on Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192, pp. 18–33 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Behzad Akbarpour
    • 1
  • Lawrence C. Paulson
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeEngland

Personalised recommendations