The Geometry of the Neighbor-Joining Algorithm for Small Trees

  • Kord Eickmeyer
  • Ruriko Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5147)

Abstract

In 2007, Eickmeyer et al. showed that the tree topologies outputted by the Neighbor-Joining (NJ) algorithm and the balanced minimum evolution (BME) method for phylogenetic reconstruction are each determined by a polyhedral subdivision of the space of dissimilarity maps \({\mathbb R}^{n \choose 2}\), where n is the number of taxa. In this paper, we will analyze the behavior of the Neighbor-Joining algorithm on five and six taxa and study the geometry and combinatorics of the polyhedral subdivision of the space of dissimilarity maps for six taxa as well as hyperplane representations of each polyhedral subdivision. We also study simulations for one of the questions stated by Eickmeyer et al., that is, the robustness of the NJ algorithm to small perturbations of tree metrics, with tree models which are known to be hard to be reconstructed via the NJ algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atteson, K.: The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25, 251–278 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J. Classif. 22, 3–15 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Eickmeyer, K., Huggins, P., Pachter, L., Yoshida, R.: On the optimality of the neighbor-joining algorithm. Algorithms in Molecular Biology 3 (2008)Google Scholar
  4. 4.
    Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)CrossRefGoogle Scholar
  5. 5.
    Galtier, N., Gascuel, O., Jean-Marie, A.: Markov models in molecular evolution. In: Nielsen, R. (ed.) Statistical Methods in Molecular Evolution, pp. 3–24 (2005)Google Scholar
  6. 6.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes — Combinatorics and Computation, pp. 43–74 (2000)Google Scholar
  7. 7.
    Kimura, M.: A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120 (1980)CrossRefGoogle Scholar
  8. 8.
    Neyman, J.: Molecular studies of evolution: a source of novel statistical problems. In: Gupta, S., Yackel, J. (eds.) Statistical decision theory and related topics, pp. 1–27. New York Academic Press, London (1971)Google Scholar
  9. 9.
    Jukes, H.T., Cantor, C.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism, pp. 21–32. New York Academic Press, London (1969)Google Scholar
  10. 10.
    Levy, D., Yoshida, R., Pachter, L.: Neighbor-joining with phylogenetic diversity estimates. Molecular Biology and Evolution 23, 491–498 (2006)CrossRefGoogle Scholar
  11. 11.
    Mihaescu, R., Levy, D., Pachter, L.: Why Neighbor-Joining Works. Algorithmica (2008)Google Scholar
  12. 12.
    Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48 (1994)Google Scholar
  13. 13.
    Ota, S., Li, W.H.: NJML: A Hybrid algorithm for the neighbor-joining and maximum likelihood methods. Molecular Biology and Evolution 17(9), 1401–1409 (2000)Google Scholar
  14. 14.
    Saitou, N., Nei, M.: The neighbor joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425 (1987)Google Scholar
  15. 15.
    Gascuel, O., Steel, M.: Neighbor-joining revealed. Molecular Biology and Evolution 23, 1997–2000 (2006)CrossRefGoogle Scholar
  16. 16.
    Studier, J.A., Keppler, K.J.: A note on the neighbor-joining method of Saitou and Nei. Molecular Biology and Evolution 5, 729–731 (1988)Google Scholar
  17. 17.
    Yang, Z.: PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS 15, 555–556 (1997)Google Scholar
  18. 18.
    Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings of the Royal Society B: Biological Sciences 267, 109–116 (2000)CrossRefGoogle Scholar
  19. 19.
    Ziegler, G.: Lectures on Polytopes. Springer, Heidelberg (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kord Eickmeyer
    • 1
  • Ruriko Yoshida
    • 2
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.University of KentuckyLexingtonUSA

Personalised recommendations