Investigating Generic Methods to Solve Hopf Bifurcation Problems in Algebraic Biology

  • Thomas Sturm
  • Andreas Weber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5147)


Symbolic methods for investigating Hopf bifurcation problems of vector fields arising in the context of algebraic biology have recently obtained renewed attention. However, the symbolic investigations have not been fully algorithmic but required a sequence of symbolic computations intervened with ad hoc insights and decisions made by a human. In this paper we discuss the use of generic methods to reduce questions on the existence of Hopf bifurcations in parameterized polynomial vector fields to quantifier elimination problems over the reals combined with simplification techniques available in REDLOG. We can reconstruct most of the results given in the literature within a few seconds of computation time. As no tedious hand computations are involved we presume that the use of these generic methods will be a useful tool for investigating other examples.


Hopf Bifurcation Symbolic Computation Atomic Formula Bifurcation Problem Existential Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boulier, F., Lefranc, M., Lemaire, F., Morant, P., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. Journal of Symbolic Computation 40(6), 1361–1382 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Mathematics in Computer Science 1(3), 507–539 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback loops for Shilnikov chaos: The peroxidase-oxidase reaction. The Journal of Chemical Physics 125, 014901, 1–12 (2006)CrossRefGoogle Scholar
  5. 5.
    Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston, N.G.J.: Crossing the Hopf bifurcation in a live predator-prey system. Science 290(5495), 1358–1360 (2000)CrossRefGoogle Scholar
  6. 6.
    Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. multistability and oscillations in ordinary differential equation models. Journal of Mathematical Biology 55(1), 61–86 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell division cycle of fission yeast. Chaos: An Interdisciplinary Journal of Nonlinear Science 11(1), 277–286 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Tyson, J.J., Chen, K., Novak, B.: Network Dynamics and Cell Physiology. Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001)CrossRefGoogle Scholar
  9. 9.
    El Kahoui, M., Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. Journal of Symbolic Computation 30(2), 161–179 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Weber, A.: Quantifier elimination on real closed fields and differential equations. In: Löwe, B. (ed.) Algebra, Logic, Set Theory – Festschrift für Ulrich Felgner zum 65. Geburtstag. Studies in Logic, vol. 4, pp. 291–315. College Publications (2007)Google Scholar
  11. 11.
    Weispfenning, V.: Simulation and optimization by quantifier elimination. Journal of Symbolic Computation 24(2), 189–208 (1997); Special issue on applications of quantifier eliminationzbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing 8(2), 85–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Sturm, T.: Redlog online resources for applied quantifier elimination. Acta Academiae Aboensis, Ser. B 67(2), 177–191 (2007)Google Scholar
  16. 16.
    Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation 24(2), 209–231 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning 21(3), 357–380 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Brown, C.W., Groß, C.: Efficient preprocessing methods for quantifier elimination. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2006. LNCS, vol. 4194, pp. 89–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Sun, M., Tian, L., Yin, J.: Hopf bifurcation analysis of the energy resource chaotic system. International Journal of Nonlinear Science 1(1), 49–53 (2006)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Sturm
    • 1
  • Andreas Weber
    • 2
  1. 1.Universität PassauPassauGermany
  2. 2.Institut für Informatik IIUniversität BonnBonnGermany

Personalised recommendations