Two Constant Approximation Algorithms for Node-Weighted Steiner Tree in Unit Disk Graphs

  • Feng Zou
  • Xianyue Li
  • Donghyun Kim
  • Weili Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5165)


Given a graph G = (V,E) with node weight w: VR +  and a subset S ⊆ V, find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio a ln n for any 0 < a < 1 unless NP ⊆ DTIME(nO(logn)), where n is the number of nodes in s. In this paper, we show that for unit disk graph, the problem is still NP-hard, however it has polynomial time constant approximation. We will present a 4-approximation and a 2.5ρ-approximation where ρ is the best known performance ratio for polynomial time approximation of classical Steiner minimum tree problem in graphs. As a corollary, we obtain that there is polynomial time (9.875+ε)-approximation algorithm for minimum weight connected dominating set in unit disk graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aneja, Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10, 167–178 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14, 147–159 (1984)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. Journal of Algorithms 17, 381–408 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximation for Steiner tree with minimum number of Steiner points. Theoretical Computer Science 262, 83–99 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45, 634–652 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability:A Guide to the Theory of NP-Completeness. Freeman, San Fransico (1978)Google Scholar
  7. 7.
    Guha, S., Khuller, S.: Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets. Information and Computation 150, 57–74 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hougardy, S., Prömel, H.J.: A 1.598 Approximation Algorithm for the Steiner Problem in Graphs. SODA, 448–453 (1998)Google Scholar
  9. 9.
    Huang, Y., Gao, X., Zhang, Z., Wu, W.: A Better Constant-Factor Approximation for Weighted Dominating Set in Unit Disk Graph (preprint)Google Scholar
  10. 10.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19, 104–115 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kou, L.T., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees, pp. 141–145 (1981)Google Scholar
  12. 12.
    Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.H., Wu, W.: Improving Construction for Connected Dominating Set with Steiner Tree in Wireless Sensor Networks. Journal of Global Optimizatio 35, 111–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moss, A., Rabani, Y.: Approximation Algorithms for Constrained Node Weighted Steiner Tree Problems. In: STOC (2001)Google Scholar
  14. 14.
    Robins, G., Zelikovski, A.: Improved Steiner Tree Approximation in Graphs. In: Proc. of 11th. ACM-SIAM Symposium on Discrete. Algorithms, pp. 770–779 (2000)Google Scholar
  15. 15.
    Segev, A.: The node-weighted steiner tree problem. Networks 17, 1–17 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Shore, M.L., Foulds, L.R., Gibbons, R.B.: An algorithm for the Steiner problem in graphs. Networks 12, 323–333 (1982)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zelikovsky, A.: An 11/6 approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Feng Zou
    • 1
  • Xianyue Li
    • 2
  • Donghyun Kim
    • 1
  • Weili Wu
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardson
  2. 2.School of Mathematics and StatisticsLanzhou UniversityLanzhouP.R. China

Personalised recommendations