Two Constant Approximation Algorithms for Node-Weighted Steiner Tree in Unit Disk Graphs

  • Feng Zou
  • Xianyue Li
  • Donghyun Kim
  • Weili Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5165)

Abstract

Given a graph G = (V,E) with node weight w: VR +  and a subset S ⊆ V, find a minimum total weight tree interconnecting all nodes in S. This is the node-weighted Steiner tree problem which will be studied in this paper. In general, this problem is NP-hard and cannot be approximated by a polynomial time algorithm with performance ratio a ln n for any 0 < a < 1 unless NP ⊆ DTIME(nO(logn)), where n is the number of nodes in s. In this paper, we show that for unit disk graph, the problem is still NP-hard, however it has polynomial time constant approximation. We will present a 4-approximation and a 2.5ρ-approximation where ρ is the best known performance ratio for polynomial time approximation of classical Steiner minimum tree problem in graphs. As a corollary, we obtain that there is polynomial time (9.875+ε)-approximation algorithm for minimum weight connected dominating set in unit disk graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aneja, Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10, 167–178 (1980)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14, 147–159 (1984)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. Journal of Algorithms 17, 381–408 (1994)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, D., Du, D.Z., Hu, X.D., Lin, G.H., Wang, L., Xue, G.: Approximation for Steiner tree with minimum number of Steiner points. Theoretical Computer Science 262, 83–99 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45, 634–652 (1998)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability:A Guide to the Theory of NP-Completeness. Freeman, San Fransico (1978)Google Scholar
  7. 7.
    Guha, S., Khuller, S.: Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets. Information and Computation 150, 57–74 (1999)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hougardy, S., Prömel, H.J.: A 1.598 Approximation Algorithm for the Steiner Problem in Graphs. SODA, 448–453 (1998)Google Scholar
  9. 9.
    Huang, Y., Gao, X., Zhang, Z., Wu, W.: A Better Constant-Factor Approximation for Weighted Dominating Set in Unit Disk Graph (preprint)Google Scholar
  10. 10.
    Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19, 104–115 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kou, L.T., Markowsky, G., Berman, L.: A Fast Algorithm for Steiner Trees, pp. 141–145 (1981)Google Scholar
  12. 12.
    Min, M., Du, H., Jia, X., Huang, C.X., Huang, S.C.H., Wu, W.: Improving Construction for Connected Dominating Set with Steiner Tree in Wireless Sensor Networks. Journal of Global Optimizatio 35, 111–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moss, A., Rabani, Y.: Approximation Algorithms for Constrained Node Weighted Steiner Tree Problems. In: STOC (2001)Google Scholar
  14. 14.
    Robins, G., Zelikovski, A.: Improved Steiner Tree Approximation in Graphs. In: Proc. of 11th. ACM-SIAM Symposium on Discrete. Algorithms, pp. 770–779 (2000)Google Scholar
  15. 15.
    Segev, A.: The node-weighted steiner tree problem. Networks 17, 1–17 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Shore, M.L., Foulds, L.R., Gibbons, R.B.: An algorithm for the Steiner problem in graphs. Networks 12, 323–333 (1982)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Zelikovsky, A.: An 11/6 approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1993)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Feng Zou
    • 1
  • Xianyue Li
    • 2
  • Donghyun Kim
    • 1
  • Weili Wu
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardson
  2. 2.School of Mathematics and StatisticsLanzhou UniversityLanzhouP.R. China

Personalised recommendations