Parameterized Graph Editing with Chosen Vertex Degrees

  • Luke Mathieson
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5165)


We study the parameterized complexity of the following problem: is it possible to make a given graph r-regular by applying at most k elementary editing operations; the operations are vertex deletion, edge deletion, and edge addition. We also consider more general annotated variants of this problem, where vertices and edges are assigned an integer cost and each vertex v has assigned its own desired degree δ(v) ∈ {0,...,r}. We show that both problems are fixed-parameter tractable when parameterized by (k,r), but W[1]-hard when parameterized by k alone. These results extend our earlier results on problems that are defined similarly but where edge addition is not available. We also show that if edge addition and/or deletion are the only available operations, then the problems are solvable in polynomial time. This completes the classification for all combinations of the three considered editing operations.


Regular Graph Editing Operation Edge Addition Degree Function Edge Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Yehuda, R., Rawitz, D.: Approximating element-weighted vertex deletion problems for the complete k-partite property. Journal of Algorithms 42(1), 20–40 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H., Tan, R., van Leeuwen, J.: Finding a ∆-regular supergraph of minimum order. Discrete Applied Mathematics 131(1), 3–9 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheah, F., Corneil, D.G.: The complexity of regular subgraph recognition. Discrete Applied Mathematics 27, 59–68 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chvátal, V., Fleischner, H., Sheehan, J., Thomassen, C.: Three-regular subgraphs of four regular graphs. Journal of Graph Theory 3, 371–386 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dehne, F., Langston, M., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Edmonds, J.: Paths trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Elkind, E.: True costs of cheap labor are hard to measure: Edge deletion and VCG payments in graphs. In: Riedl, J., Kearns, M.J., Reiter, M.K. (eds.) 6th ACM Conference on Electronic Commerce (EC-2005), pp. 108–116. ACM, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: FPT is P-TIME extremal structure I. In: Algorithms and Complexity in Durham 2005 (ACiD 2005), Texts in Algorithmics, pp. 1–41. College Publications (2005)Google Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. Journal of the ACM 48, 1184–1206 (2001)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland Publishing Co., Amsterdam (1986)zbMATHGoogle Scholar
  14. 14.
    Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and generalizations. In: Harland, J., Manyem, P. (eds.) Fourteenth Computing: The Australasian Theory Symposium (CATS 2008). CRPIT, vol. 77, pp. 79–86. ACS (2008)Google Scholar
  15. 15.
    Moser, H., Thilikos, D.: Parameterized complexity of finding regular induced subgraphs. In: Algorithms and Complexity in Durham 2006 (ACiD 2006), Texts in Algorithmics, pp. 107–118. College Publications (2006)Google Scholar
  16. 16.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  17. 17.
    Plesník, J.: A note on the complexity of finding regular subgraphs. Discrete Mathematics 49, 161–167 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Stewart, I.A.: Deciding whether a planar graph has a cubic subgraph is NP-complete. Discrete Mathematics 126(1–3), 349–357 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Stewart, I.A.: Finding regular subgraphs in both arbitrary and planar graph. Discrete Applied Mathematics 68(3), 223–235 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Stewart, I.A.: On locating cubic subgraphs in bounded-degree connected bipartite graphs. Discrete Mathematics 163(1–3), 319–324 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Stewart, I.A.: On the fixed-parameter tractability of parameterized model-checking problems. Information Processing Letters 106, 33–36 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Luke Mathieson
    • 1
  • Stefan Szeider
    • 1
  1. 1.Department of Computer ScienceUniversity of DurhamUK

Personalised recommendations