Advertisement

Simplicial Powers of Graphs

  • Andreas Brandstädt
  • Van Bang Le
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5165)

Abstract

In a finite simple undirected graph, a vertex is simplicial if its neighborhood is a clique. We say that, for k ≥ 2, a graph G = (V G ,E G ) is the k-simplicial power of a graph H = (V H ,E H ) (H a root graph of G) if V G is the set of all simplicial vertices of H, and for all distinct vertices x and y in V G , xy ∈ E G if and only if the distance in H between x and y is at most k. This concept generalizes k-leaf powers introduced by Nishimura, Ragde and Thilikos which were motivated by the search for underlying phylogenetic trees; k-leaf powers are the k-simplicial powers of trees. Recently, a lot of work has been done on k-leaf powers and their roots as well as on their variants phylogenetic roots and Steiner roots. For k ∈ {3,4,5}, k-leaf powers can be recognized in linear time, and for k ∈ {3,4}, structural characterizations are known. For all other k, recognition and structural characterization of k-leaf powers is open.

Since trees and block graphs (i.e., connected graphs whose blocks are cliques) have very similar metric properties, it is natural to study k-simplicial powers of block graphs. We show that leaf powers of trees and simplicial powers of block graphs are closely related, and we study simplicial powers of other graph classes containing all trees such as ptolemaic graphs and strongly chordal graphs.

Keywords

Graph powers leaf powers simplicial powers forbidden induced subgraph characterization chordal graphs block graphs ptolemaic graphs strongly chordal graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandelt, H.-J., Henkmann, A., Nicolai, F.: Powers of distance-hereditary graphs. Discrete Math. 145, 37–60 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bandelt, H.-J., Prisner, E.: Clique graphs and Helly graphs. J. Combin. Th. (B) 51, 34–45 (1991)Google Scholar
  3. 3.
    Barthélémy, J.P., Guénoche, A.: Trees and proximity representations. Wiley & Sons, Chichester (1991)zbMATHGoogle Scholar
  4. 4.
    Bibelnieks, E., Dearing, P.M.: Neighborhood subtree tolerance graphs. Discrete Applied Math. 43, 13–26 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Brandstädt, A., Dragan, F.F., Chepoi, V.D., Voloshin, V.I.: Dually chordal graphs. SIAM J. Discrete Math. 11, 437–455 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers; extended abstract. In: Proceedings of LATIN 2008. LNCS, vol. 4957, pp. 479–491 (2008)Google Scholar
  7. 7.
    Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Information Processing Letters 98, 133–138 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Brandstädt, A., Le, V.B., Rautenbach, D.: Exact leaf powers (submitted)Google Scholar
  9. 9.
    Brandstädt, A., Le, V.B., Rautenbach, D.: Distance-hereditary 5-leaf powers (submitted)Google Scholar
  10. 10.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, vol. 3. SIAM, Philadelphia (1999)Google Scholar
  11. 11.
    Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear time recognition of 4-leaf powers. ACM Transactions on Algorithms(accepted)Google Scholar
  12. 12.
    Brandstädt, A., Wagner, P.: On (k,ℓ)-leaf powers; extended abstract. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 525–535. Springer, Heidelberg (2007) (Full version submitted)CrossRefGoogle Scholar
  13. 13.
    Buneman, P.: A note on the metric properties of trees. J. Combin. Th.  (B) 1, 48–50 (1974)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Cáceres, J., Márquez, A., Oellermann, O.R., Puertas, M.L.: Rebuilding convex sets in graphs. Discrete Math. 293, 26–37 (2005)CrossRefGoogle Scholar
  15. 15.
    Chang, M.-S., Ko, T.: The 3-Steiner Root Problem; extended abstract. In: Proceedings 33rd International Workshop on Graph-Theoretic Concepts in Computer Science WG 2007. LNCS, vol. 4769, pp. 109–120 (2007)Google Scholar
  16. 16.
    Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Computing 32, 864–879 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Dahlhaus, E., Duchet, P.: On strongly chordal graphs. Ars Combinatoria 24B, 23–30 (1987)MathSciNetGoogle Scholar
  19. 19.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root problems; extended abstract. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 389–401. Springer, Heidelberg (2004); Algorithmica 44, 363–381 (2006)Google Scholar
  20. 20.
    Duchet, P.: Classical perfect graphs. Annals of Discrete Math. 21, 67–96 (1984)MathSciNetGoogle Scholar
  21. 21.
    Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–189 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S.: Computers and Intractability–A Guide to the Theory of NP-Completeness. Freeman, New York (1979) (twenty-third printing 2002)zbMATHGoogle Scholar
  23. 23.
    Hayward, R.B., Kearney, P.E., Malton, A.: NeST graphs. Discrete Applied Math. 121, 139–153 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Harary, F.: Graph Theory. Addison-Wesley, Massachusetts (1972)Google Scholar
  25. 25.
    Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford, Ser. 2(28), 417–420 (1977)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Howorka, E.: On metric properties of certain clique graphs. J. Combin. Th. (B) 27, 67–74 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kennedy, W.: Strictly chordal graphs and phylogenetic roots, Master Thesis, University of Alberta (2005)Google Scholar
  28. 28.
    Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. Journal of Discrete Algorithms 4, 511–525 (2006)zbMATHCrossRefGoogle Scholar
  29. 29.
    Le, V.B., Tuy, N.N.: A good characterization of squares of block graphs (manuscript, 2008)Google Scholar
  30. 30.
    Lin, G.-H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Lubiw, A.: Γ-free matrices, Master of Science Thesis, Dept. of Combin. and Optim., University of Waterloo (1982)Google Scholar
  32. 32.
    Lubiw, A.: Doubly lexical orderings of matrices. SIAM J. Computing 16, 854–879 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Nishimura, N., Ragde, P., Thilikos, D.: On graph powers for leaf-labeled trees. J. Algorithms 42, 69–108 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306, 1456–1461 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Brandstädt
    • 1
  • Van Bang Le
    • 1
  1. 1.Institut für InformatikUniversität RostockRostockGermany

Personalised recommendations