Advertisement

Strong Secrecy for Wireless Channels (Invited Talk)

  • João Barros
  • Matthieu Bloch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5155)

Abstract

It is widely accepted by the information security community that a secrecy criterion based solely on minimizing the rate at which an eavesdropper extracts bits from a block of noisy channel outputs is too weak a concept to guarantee the confidentiality of the protected data. Even if this rate goes to zero asymptotically (i.e. for sufficiently large codeword length), vital information bits can easily be leaked to an illegitimate receiver. In contrast, many of the recent results in information-theoretic security for wireless channel models with continuous random variables rely on this weak notion of secrecy, even though previous work has shown that it is possible to determine the ultimate secrecy rates for discrete memoryless broadcast channels under a stronger secrecy criterion — namely one which bounds not the rate but the total number of bits obtained by the eavesdropper. Seeking to bridge the existing gap between fundamental cryptographic requirements and ongoing research in wireless security, we present a proof for the secrecy capacity of Gaussian broadcast channels under the strong secrecy criterion. As in the discrete memoryless case, the secrecy capacity is found to be the same as in the weaker formulation. The extension to fading channels is shown to be straightforward.

Keywords

Fading Channel Wireless Channel Gaussian Channel Secrecy Capacity Wiretap Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barros, J., Rodrigues, M.R.D.: Secrecy capacity of wireless channels. In: Proceedings of the IEEE International Symposium on Information Theory, Seattle, WA (2006)Google Scholar
  2. 2.
    Bloch, M., Barros, J., Rodrigues, M.R.D., McLaughlin, S.W.: Wireless information-theoretic security. IEEE Transactions on Information Theory 54(6), 2515–2534 (2008)CrossRefGoogle Scholar
  3. 3.
    Bloch, M., Thangaraj, A., McLaughlin, S.W., Merolla, J.-M.: LDPC-based Gaussian key reconciliation. In: Proc. of the IEEE International Workshop on Information Theory, Punta del Este, Uruguay (March 2006)Google Scholar
  4. 4.
    Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Transactions on Information Theory 24(3), 339–348 (1978)MATHCrossRefGoogle Scholar
  5. 5.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gopala, P.K., Lai, L., El-Gamal, H.: On the secrecy capacity of fading channels. In: Proceedings of IEEE International Symposium on Information Theory, Nice, France, eprint:cs.IT/0610103 (2007)Google Scholar
  7. 7.
    Hero, A.: Secure space-time communication. IEEE Transactions on Information 49(12), 3235–3249 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Leung-Yan-Cheong, S.K., Hellman, M.E.: The gaussian wiretap channel. IEEE Transactions on Information Theory 24(4), 451–456 (1978)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liang, Y., Poor, H.V., Shamai, S.: Secure communication over fading channels. IEEE Transactions on Information Theory 54, 2470–2492 (2008)CrossRefGoogle Scholar
  10. 10.
    Maurer, U., Wolf, S.: Information-theoretic key agreement: From weak to strong secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 351. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory 39(3), 733–742 (1993)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Negi, R., Goel, S.: Secret communication using artificial noise. In: Proceedings of the IEEE Vehicular Technology Conference, Dallas, TX (September 2005)Google Scholar
  13. 13.
    Nitinawarat, S.: Secret key generation for correlated gaussian sources. In: Proceedings of the Forty-Fifth Annual Allerton Conference, Monticello, IL (September 2007)Google Scholar
  14. 14.
    Parada, P., Blahut, R.: Secrecy capacity of SIMO and slow fading channels. In: Proceedings of the IEEE International Symposium on Information Theory, Adelaide, Australia (September 2005)Google Scholar
  15. 15.
    Pinsker, M.S.: Information and Information Stability of Random Variables and Processes. Holden Day (1964)Google Scholar
  16. 16.
    Shannon, C.E., et al.: A mathematical theory of communications. Bell System Technical Journal 27(7), 379–423 (1948)MathSciNetGoogle Scholar
  17. 17.
    Slepian, D., Wolf, J.K.: Noiseless Coding of Correlated Information Sources. IEEE Transactions on Information Theory 19(4), 471–480 (1973)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channels. IEEE Transactions on Information Theory 53(8), 2933–2945 (2007)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54, 1355–1387 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • João Barros
    • 1
  • Matthieu Bloch
    • 2
  1. 1.Instituto de TelecomunicaçõesFaculdade de Ciências da Universidade do Porto, and MITPorto, CambridgePortugal
  2. 2.Department of Electrical EngineeringUniversity of Notre DameNotre Dame

Personalised recommendations