Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network

  • Travis R. Beals
  • Barry C. Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5155)


We introduce a simple, practical approach with probabilistic information-theoretic security to mitigate one of quantum key distribution’s major limitations: the short maximum transmission distance (~200 km) possible with present day technology. Our scheme uses classical secret sharing techniques to allow secure transmission over long distances through a network containing randomly-distributed compromised nodes. The protocol provides arbitrarily high confidence in the security of the protocol, and modest scaling of resource costs with improvement of the security parameter. Although some types of failure are undetectable, users can take preemptive measures to make the probability of such failures arbitrarily small.


quantum key distribution QKD secret sharing information theoretic security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)Google Scholar
  3. 3.
    Takesue, H., Nam, S.W., Zhang, Q., Hadfield, R.H., Honjo, T., Tamaki, K., Yamamoto, Y.: Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors. Nature Photonics 1, 343–348 (2007)CrossRefGoogle Scholar
  4. 4.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar
  5. 5.
    Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)CrossRefGoogle Scholar
  6. 6.
    Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)CrossRefGoogle Scholar
  7. 7.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)CrossRefGoogle Scholar
  9. 9.
    Shamir, A.: How to share a secret. Comm.of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. of the National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  11. 11.
    Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Physical Review A 72, 012332 (2005)CrossRefGoogle Scholar
  12. 12.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)Google Scholar
  13. 13.
    Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc.of the 10th Annual ACM Symposium on Principles of Distributed Computing, pp. 51–59 (1991)Google Scholar
  14. 14.
    Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing, or how to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Salvail, L.: Security Architecture for SECOQC: Secret-key Privacy and Authenticity over QKD Networks. D-SEC-48, SECOQC (2007)Google Scholar
  16. 16.
    D’Arco, P., Stinson, D.R.: On unconditionally secure robust distributed key distribution centers. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 346–363. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Travis R. Beals
    • 1
  • Barry C. Sanders
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute for Quantum Information ScienceUniversity of CalgaryAlbertaCanada

Personalised recommendations