Advertisement

Exploiting the Power of GPUs for Asymmetric Cryptography

  • Robert Szerwinski
  • Tim Güneysu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

Modern Graphics Processing Units (GPU) have reached a dimension with respect to performance and gate count exceeding conventional Central Processing Units (CPU) by far. Many modern computer systems include – beside a CPU – such a powerful GPU which runs idle most of the time and might be used as cheap and instantly available co-processor for general purpose applications.

In this contribution, we focus on the efficient realisation of the computationally expensive operations in asymmetric cryptosystems on such off-the-shelf GPUs. More precisely, we present improved and novel implementations employing GPUs as accelerator for RSA and DSA cryptosystems as well as for Elliptic Curve Cryptography (ECC). Using a recent Nvidia 8800GTS graphics card, we are able to compute 813 modular exponentiations per second for RSA or DSA-based systems with 1024 bit integers. Moreover, our design for ECC over the prime field P-224 even achieves the throughput of 1412 point multiplications per second.

Keywords

Asymmetric Cryptosystems Graphics Processing Unit RSA DSA ECC 

References

  1. 1.
    Advanced Micro Devices, Inc. (AMD), Sunnyvale, CA, USA. ATI CTM Guide, Release 1.01 (2006)Google Scholar
  2. 2.
    American National Standards Institute (ANSI). Public key cryptography for the financial services industry: The elliptic curve digital signature algorithm (ECDSA) (ANSI X9.62:2005) (2005)Google Scholar
  3. 3.
    Bajard, J.-C., Didier, L.-S., Kornerup, P.: Modular multiplication and base extension in residue number systems. In: Burgess, N. (ed.) Proceedings ARITH15, the 15th IEEE Symposium on Computer Arithmetic, Vail, Colorado, USA, pp. 59–65 (June 2001)Google Scholar
  4. 4.
    Bajard, J.-C., Meloni, N., Plantard, T.: Efficient RNS bases for cryptography. In: Proceedings of IMACS 2005 World Congress, Paris, France (July 2005)Google Scholar
  5. 5.
    Bajard, J.-C., Plantard, T.: RNS bases and conversions. Advanced Signal Processing Algorithms, Architectures, and Implementations XIV 5559(1), 60–69 (2004)Google Scholar
  6. 6.
    Koç, Ç.K., Acar, T., Kaliski Jr., B.S.: Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro 16(3), 26–33 (1996)CrossRefGoogle Scholar
  7. 7.
    Koç, Ç.K., Naccache, D., Paar, C. (eds.): CHES 2001. LNCS, vol. 2162. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  8. 8.
    Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall/CRC Press, Boca Raton (2005)Google Scholar
  9. 9.
    Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: CryptoGraphics: Secret key cryptography using graphics cards. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Costigan, N., Scott, M.: Accelerating SSL using the vector processors in IBM’s Cell broadband engine for Sony’s Playstation 3. In: SPEED 2007 Workshop Record [12] (2007), http://www.hyperelliptic.org/SPEED/
  11. 11.
    ECRYPT. eBATS: ECRYPT benchmarking of asymmetric systems. Technical report (2007), http://www.ecrypt.eu.org/ebats/
  12. 12.
    ECRYPT European Network of Excellence in Cryptography. Software Performance Enhancement for Encryption and Decryption (SPEED), 2007 Workshop Record, Amsterdam, The Netherlands (June 2007), http://www.hyperelliptic.org/SPEED/
  13. 13.
    Fan, J., Skiyama, K., Verbauwhede, I.: Montgomery modular multiplication algorithm for multi-core systems. In: SPEED 2007 Workshop Record [12] (2007), http://www.hyperelliptic.org/SPEED/
  14. 14.
    Fleissner, S.: GPU-accelerated Montgomery exponentiation. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, pp. 213–220. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Gaudry, P., Thomé, E.: The \(\mbox{mpF}_q\) library and implementing curve-based key exchanges. In: SPEED 2007 Workshop Record [12], pp. 49–64 (2007), http://www.hyperelliptic.org/SPEED/
  16. 16.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)Google Scholar
  17. 17.
    Harris, M.: Optimizing CUDA. In: Supercomputing 2007 Tutorial, Reno, NV, USA (November 2007)Google Scholar
  18. 18.
    Harrison, O., Waldron, J.: AES encryption implementation and analysis on commodity graphics processing unit. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 209–226. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Hisil, H., Carter, G., Dawson, E.: Faster group operations on special elliptic curves. Cryptology ePrint Archive, Report 2007/441 (2007), http://eprint.iacr.org/
  20. 20.
    Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower architecture for fast parallel Montgomery multiplication. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 523–538. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Manavski, S.A.: CUDA compatible GPU as an efficient hardware accelerator for AES cryptography. In: Proceedings of IEEE’s International Conference on Signal Processing and Communication ICSPC 2007, pp. 65–68 (November 2007)Google Scholar
  22. 22.
    Mentens, N.: Secure and Efficient Coprocessor Design for Cryptographic Applications on FPGAs. PhD thesis, Katholieke Universiteit Leuven, Leuven-Heverlee, Belgium (June 2007)Google Scholar
  23. 23.
    Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Moss, A., Page, D., Smart, N.: Toward acceleration of RSA using 3d graphics hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 369–388. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    National Institute of Standards and Technology (NIST). Digital signature standard (DSS) (FIPS 186-2) (January 2000)Google Scholar
  26. 26.
    Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.: Implementation of RSA algorithm based on RNS Montgomery multiplication. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 364–376. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Nvidia Corporation, Santa Clara, CA, USA. Compute Unified Device Architecture (CUDA) Programming Guide, Version 1.0 (June 2007)Google Scholar
  28. 28.
    Nvidia Corporation, Santa Clara, CA, USA. Parallel Thread Execution (PTX) ISA Version 1.0, Release 1.0 (June 2007)Google Scholar
  29. 29.
    Poettering, B.: seccure – SECCURE elliptic curve crypto utility for reliable encryption, version 0.3 (August 2006), http://point-at-infinity.org/seccure/
  30. 30.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. In: Communications of the ACM, vol. 21, pp. 120–126 (February 1978)Google Scholar
  31. 31.
    Rosenberg, U.: Using graphic processing unit in block cipher calculations. Master’s thesis, University of Tartu, Tartu, Estonia (2007)Google Scholar
  32. 32.
    Schinianakis, D.M., Kakarountas, A.P., Stouraitis, T.: A new approach to elliptic curve cryptography: an RNS architecture. In: Proceedings of IEEE’s 14th Mediterranian Electrotechnical Conference (MELECON 2006), pp. 1241–1245 (May 2006)Google Scholar
  33. 33.
    Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in RNS. In: IEEE Transactions on Computers, vol. 38, pp. 292–297 (February 1989)Google Scholar
  34. 34.
    Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., et al. (eds.) [7], pp. 118–125Google Scholar
  35. 35.
    Stinson, D.R.: Cryptography. Theory and Practice, 3rd edn. Taylor & Francis, Abington (2005)Google Scholar
  36. 36.
    Suzuki, D.: How to maximize the potential of FPGA resources for modular exponentiation. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 272–288. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  37. 37.
    Szabó, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill Inc., USA (1967)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Szerwinski
    • 1
  • Tim Güneysu
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr University BochumGermany

Personalised recommendations