Mutual Information Analysis

A Generic Side-Channel Distinguisher
  • Benedikt Gierlichs
  • Lejla Batina
  • Pim Tuyls
  • Bart Preneel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

We propose a generic information-theoretic distinguisher for differential side-channel analysis. Our model of side-channel leakage is a refinement of the one given by Standaert et al. An embedded device containing a secret key is modeled as a black box with a leakage function whose output is captured by an adversary through the noisy measurement of a physical observable. Although quite general, the model and the distinguisher are practical and allow us to develop a new differential side-channel attack. More precisely, we build a distinguisher that uses the value of the Mutual Information between the observed measurements and a hypothetical leakage to rank key guesses. The attack is effective without any knowledge about the particular dependencies between measurements and leakage as well as between leakage and processed data, which makes it a universal tool. Our approach is confirmed by results of power analysis experiments. We demonstrate that the model and the attack work effectively in an attack scenario against DPA-resistant logic.

Keywords

Differential Side-Channel Analysis (DSCA) Information Theory Mutual Information DPA-resistant logic 

References

  1. 1.
    Aigner, M., Oswald, E.: Power Analysis Tutorial, http://www.iaik.tugraz.at/aboutus/people/oswald/papers/dpa_tutorial.pdf
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differential Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Chichester (2006)MATHGoogle Scholar
  6. 6.
    Golić, J.D., Tymen, C.: Multiplicative masking and power anaylsis of AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 31–47. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Goubin, L.: A sound method for switching between boolean and arithmetic masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3–15. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: WOST 1999: Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Workshop on Smartcard Technology, Berkeley, CA, USA, p. 17. USENIX Association (1999)Google Scholar
  13. 13.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51(5), 541–552 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Couter-Measures for Smard Cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Shamir, A., Tromer, E.: Acoustic cryptanalysis, http://theory.csail.mit.edu/~tromer/acoustic/
  17. 17.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A formal practice-oriented model for the analysis of side-channel attacks. Cryptology ePrint Archive, Report 2006/139 (2006), http://eprint.iacr.org/
  18. 18.
    Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede, I.: Prototype IC with WDDL and differential routing - DPA resistance assessment. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Benedikt Gierlichs
    • 1
  • Lejla Batina
    • 1
  • Pim Tuyls
    • 1
    • 2
  • Bart Preneel
    • 1
  1. 1.K.U. Leuven, ESAT/SCD-COSIC and IBBTLeuven-HeverleeBelgium
  2. 2.Philips Research EuropeEindhovenThe Netherlands

Personalised recommendations