Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages

  • François-Xavier Standaert
  • Cedric Archambeau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5154)

Abstract

The power consumption and electromagnetic radiation are among the most extensively used side-channels for analyzing physically observable cryptographic devices. This paper tackles three important questions in this respect. First, we compare the effectiveness of these two side-channels. We investigate the common belief that electromagnetic leakages lead to more powerful attacks than their power consumption counterpart. Second we study the best combination of the power and electromagnetic leakages. A quantified analysis based on sound information theoretic and security metrics is provided for these purposes. Third, we evaluate the effectiveness of two data dimensionality reduction techniques for constructing subspace-based template attacks. Selecting automatically the meaningful time samples in side-channel leakage traces is an important problem in the application of template attacks and it usually relies on heuristics. We show how classical statistical tools such as Principal Component Analysis and Fisher Linear Discriminant Analysis can be used for efficiently preprocessing the leakage traces.

References

  1. 1.
    Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM Side-Channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-Channel Attacks. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg (2003)Google Scholar
  3. 3.
    Anderson, R., Kuhn, M.: Tamper Resistance - a Cautionary Note. In: The Proceedings of USENIX Electronic Commerce, Oakland, CA, USA, pp. 1–11 (November 1996)Google Scholar
  4. 4.
    Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template Attacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)MATHGoogle Scholar
  6. 6.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Gierlichs, B., Lemke, K., Paar, C.: Templates vs. Stochastic Methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2001)MATHGoogle Scholar
  11. 11.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  12. 12.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security under the Threat of Power Analysis Attacks. IEEE Transactions on Computers 51(5), 541–552 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and Electromagnetic Analysis: Improved Models, Consequences and Comparisons. VLSI Journal 40, 52–60 (2007)CrossRefGoogle Scholar
  15. 15.
    Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher based PRNG Secure Against Side-Channel Key Recovery. In: The Proceedings of ASIACCS 2008 (to appear, 2008), http://eprint.iacr.org/2007/356
  16. 16.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side-Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks, Cryptology ePrint Archive, Report 2006/139 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François-Xavier Standaert
    • 1
  • Cedric Archambeau
    • 2
  1. 1.UCL Crypto GroupUniversité catholique de Louvain 
  2. 2.Centre for Computational Statistics and Machine LearningUniversity College London 

Personalised recommendations